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Abstract

A k—spanner of a connected graph G = (V, E) is a subgraph G’ consisting of all the
vertices of V' and a subset of the edges, with the additional property that the distance
between any two vertices in G’ is larger than the distance in G by no more than a
factor of k. This paper concerns the hardness of finding spanners with a number of
edges close to the optimum. It is proved that for every fixed k, approximating the
spanner problem is at least as hard as approximating the set cover problem

We also consider a weighted version of the spanner problem, and prove an essential

difference between the approximability of the case k = 2, and the case k > 5.
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1 Introduction

The concept of graph spanners has been studied in several recent papers in the context
of communication networks, distributed computing, robotics and computational geometry
[ADDJ-90, C-94, CK-94, C-86, DFS-87, DJ-89, LR-93, LS-93, PS-89, PU-89, RL-95]. Con-
sider a simple connected graph G = (V, E), with |V| = n vertices. A subgraph G' = (V, E’)

of G is a k — spanner if for every u,v € V,

dist(u, v, G")

<k
dist(u,v,G) —

where dist(u,v,G") denotes the distance from u to v in G’; i.e., the minimum number of
edges in a path connecting them in G'. We refer to k as the stretch factor of G'.

In the Euclidean setting, spanners were studied in [C-86, DFS-87, DJ-89, LL-89, ADM*95].
The first paper to consider spanners was [C-86] dealing with the construction of spanners
for sets of points in the Euclidean plane. The [C-86] paper proved that any set of points in
the plane has a v/10—spanner with an edge density |E|/|V| of less than 3. This result has
implications for the problem of motion planning in the plane. Spanners for general graphs
were first introduced in [PU-89], where it was shown that for every n—vertex hypercube
there exists a 3-spanner with no more than 7n edges. Spanners were used in [PU-89] to
construct a new type of synchronizer for an asynchronous network. Spanners are also used
to construct efficient routing tables [PU-88]. Each node of such a network is a processor
with some local memory. The processors in the network communicate, thus an efficient rout-
ing scheme should be able to use a short path to send messages through the network while
keeping the routing information stored in the processors as succinct as possible. In [PU-88]
a technique based on spanners is developed for this goal. In [RL-95] it is suggested that
spanners may be used as network topologies. If one has an expensive desired topology, often
a sparse or low-weight (and therefore less expensive) spanner can be substituted, retaining
a similar structure with only a slight increase in communication cost. Finally, in [ABP-92]
spanners are used to model broadcast operations. Sparse spanners can be used for efficient
broadcast with respect to the following parameters: the maximum number of messages sent,

the total cost of the messages and the worst-case delay incurred for any destination.

For this, and other applications, it is desirable that the spanners be as sparse as possible,
i.e., have as few edges as possible. This leads to the following problem: Let Si(G) denote the
minimum number of edges in a k—spanner for the graph GG. The sparsest k-spanner problem

involves constructing a k—spanner with Si(G) edges for a given graph G.

It is shown in [PS-89] that the problem of determining, for a given graph G = (V, E) and



an integer m, whether Sy(G) < m is NP—complete. This indicates that we are unlikely to
find an exact solution for the sparsest k—spanner problem even when k = 2. In [C-94] this

result is extended to hold for any integer £ > 3, even when restricted to bipartite graphs.

Recently, in [VRM™97] it was shown that the k—spanner problem is hard even in other
restricted cases. More specifically, it was shown there that the problem is NP—complete
even when restricted to chordal graphs, for any & > 2 (a graph is chordal if any cycle of
length at least 4 has a chord, namely, has an edge connecting two non-adjacent vertices in
the cycle). They also show that the problem is N P—complete on split graphs, for k = 2
(a split graph contains a clique C' and an independent set I, with arbitrary connections
between the vertices of C' and I). The paper also gives relatively simple proofs that the
problem is N P—complete on bipartite graphs, as well as on bounded-degree graphs (graphs
where the degree is bounded by some fixed constant). This somewhat simplifies the proofs
in [C-94, CK-94|. Finally, in [BH-97] the problem is proven N P—complete on planar graphs
for any £ > 5.

Consequently, two possible remaining courses of action for investigating the problem are

establishing global bounds on Sk (G) and devising approximation algorithms for the problem.

In [PS-89] it is shown that every n—vertex graph G has a polynomial time constructible
(4k 4+ 1)—spanner with O(n'*'/¥) edges or in other words, Sy.1(G) = O(n'*'/*) for every
graph G. Hence, in particular, every graph G has an O(logn)—spanner with O(n) edges.
These results are close to the best possible in general, as implied by the lower bound given
in [PS-89] in the sense that there are graphs with Sy, 1(G) = Q(n!'+2(/k),

The results of [PS-89] were improved and generalized in [ADDJ-90, CDNS-92] to the
weighted case, in which there are non-negative weights associated with the edges, and the
distance between two vertices is the weighted distance. Specifically, it is shown in [ADDJ-90]
that given an n—vertex graph and an integer £ > 1, there is a polynomially constructible
(2k + 1)—spanner G’ such that [E(G')] < n - [n%]. They also show that the weight (sum
of weights of the edges) of the constructed spanner is close to the weight of the minimum
spanning tree. More specifically, w(G') < O(n®W/*))..w(MST) where w(MST) is the weight

of a minimum spanning tree.

The algorithms of [ADDJ-90, PS-89] provide us with global upper bounds for sparse
k—spanners, i.e., general bounds that hold true for every graph. However, it may be that
considerably sparser spanners exist for specific graphs. Furthermore, the upper bounds on
sparsity given by these algorithms are small (i.e., close to n) only for large values of k. It
is therefore interesting to look for approzimation algorithms which yield near-optimal local

bounds applying to the specific graph at hand, by exploiting its individual properties.



The only logarithmic ratio approximation algorithm known for constructing sparse span-
ners exists for the 2—spanner problem. Specifically, in [KP-92] an O(log(|E|/|V|)) approx-
imation algorithm is given for the 2—spanner problem. That is, given a graph G = (V| E),
the algorithm generates a 2—spanner G' = (V, E') with |E'| = O (SQ(G) -log %) edges. No
small ratio (for example, polylogarithmic ratio) approximation algorithm is known, even for
the 3—spanner problem. However, the results in [ADDJ-90] indicate that any graph admits
a 3—spanner with girth (minimum length cycle) 5. Now, every graph of girth 5 has O(n%/?)
edges. This “global” result can be considered an O(y/n) “approximation” algorithm for the
k—spanner problem, for k£ > 3. Note that this bound cannot, in general, be improved. Con-
sider a projective plane of order ¢ (cf. [B-86]). A projective plane of order ¢ is a (¢+1)-regular
bipartite graph with n = ¢® + ¢ + 1 vertices on each side, with the additional property that
every two vertices on the same side share eractly one neighbor. Such a structure is known to
exist, for example, for prime ¢. Clearly, the girth of this graph is 6. Therefore, the only 3—
(and 4—) spanner for the graph is the graph itself. Furthermore, this graph contains 6(n3/?)
edges.

In this paper we first prove that the (unweighted) 2—spanner problem is NP—hard
to approximate even when restricted to 3—colorable graphs, within clogn—ratio for some
constant ¢ < 1. This matches the approximation ratio of O(logn) of [KP-92|. Hence
the algorithm in [KP-92] is the best possible algorithm for approximating the 2—spanner

problem, up to constants.

We also show that the (unweighted) k—spanner problem is hard to approzimate within
small ratio, even when restricted to bipartite graphs. Specifically, we prove that for every
fixed integer k > 3, there exists a constant ¢ < 1 such that it is NP—hard to approximate
the k—spanner problem on bipartite graphs within ratio c¢logn (the constant ¢ depends on
the constant £.) This improves the N P—hardness result from [C-94] for fixed values of k. It

also improves, for fixed k, the NP—hardness result for general graphs.

Remark: In fact we prove that for any & = o(logn) (not necessarily fixed) there exists a
constant ¢ < 1 such that the k—spanner has no c¢-log n/k—ratio approximation, unless NP C
DTIME(nO(k)). Indeed, for k = logn, the log n—spanner problem can be approximated
within ratio O(1) since, as mentioned earlier, there is always a log n—spanner with O(n)

edges. Thus, it is mainly interesting to prove hardness results for k£ = o(logn).

Finally, we define a new weighted version of the spanner problem which we believe to be
natural. In this version, called the edge-weighted k—spanner problem, each edge e € E has
a positive length ¢(e) but also a non-negative weight w(e). The goal is to find a k—spanner
G' with a low weight. Thus, in the first place, the graph G’ should have stretch factor



k, namely, the /—distance of every pair of vertices u and v in G’ should increase by no
more than a factor of k. Second, the sum of weights w(e) of the edges in G’ should be as
small as possible. For example, in the unweighted case, ¢(e) = w(e) = 1 for every edge e.
Also, in the standard weighted case, considered in [ADDJ-90, CDNS-92|, for every edge e,
w(e) = {(e). The more general version of the problem is useful in the following case. Given
a desired network topology as described above, for a given link e = (v, u) the function /¢(e)
may represent the delay in sending messages over e, while the w(e) function may represent
the cost incurred in establishing and maintaining a connection between v and u. In the
generalized version of the problem it is possible to deal with the case that ¢ and w are not
necessarily identical. The result for the weighted case may give some insight for proving a

possible similar result for the unweighted case.

For the edge-weighted k—spanner problem we have the following results. We consider
the case where (e) = 1 for every edge and w is arbitrary. For k£ = 2, this version of the
problem admits an O(logn)—ratio approximation. However, for every k& > 5, the problem
has no 26" “"— ratio approximation, unless NP C DTIM E(nP°¥°82) for any ¢ > 0. This

later result follows by a reduction from one-round two-prover interactive proof system.

We note that ours are the first results on the hardness of approximating the spanner

problem.

2 Preliminaries

First, recall the following alternative definition of spanners:

Lemma 2.1 [PS-89] The subgraph G' = (V, E') is a k — spanner of the graph G = (V, E)
iff dist(u,v,G") <k for every (v,u) € E. 1

Thus the (unweighted) sparsest k—spanner problem can be restated as follows: We look
for a minimum subset of edges E' C F such that every edge e which does not belong to E'
lies on a cycle of length k£ + 1 or less, with edges which do belong to E’. In this case we say
that e is spanned in E' (by the remaining edges of the cycle).

In the following we say that two (independent) sets C' and D are cliqued if every vertex
in C'is connected to every vertex in D; thus C' and D induce a complete bipartite graph. We
say that C' and D are matched if |C| = |D| (i.e., C' and D are of the same size) and every

vertex in C' has a unique neighbor in D (that is, the two sets induce a perfect matching).



The set-cover problem: For our purpose it is convenient to state the set-cover problem
as follows: The input for the set-cover problem consists of a bipartite graph G(V;, Vs, E) in
which the edges cross from V) to V, (that is, V; and V5 contain no internal edges) with n
vertices on each side. The goal is to find the smallest possible subset S C V; that covers
V5, namely, the smallest S such that every vertex in V5 has a neighbor in S. We assume

throughout that the entire set V; covers V5, otherwise the problem has no solution.

The following result is known [RS-97]. This result followed two results by [LY-93]
and [F-96]. These two results were proven under a weaker assumption, i.e., that NP ¢
DTIM E(nCUoslogn),

Theorem 2.2 [RS-97] There exists a constant ¢ < 1 such that it is N P—hard to approzimate

the set-cover problem within ratio clnn. |

We require the following lemma regarding a restrictive case of the set-cover problem.
Consider the n”—degree-bounded-set-cover (n” — DBSC') problem, which is the set-cover
problem in which A, the maximum degree of any vertex in V; U Vs, is bounded by n”
for some (fixed) specified 0 < p < 1. The usual greedy algorithm ([J-74, L-75]) gives a
p - In n—ratio approximation algorithm for the n” — DBSC' problem. On the other hand,

we have the following:

Lemma 2.3 It 1s NP—hard to approximate the n” — DBSC' problem within c- p-lnn ratio,

where ¢ is the same constant as in Theorem 2.2.

Proof: Let G be an instance of the set-cover problem. Denote y = % — 1. Now, construct a
new instance of the n” — DBSC' problem by taking n* copies of G. Call this instance of the
problem G. The number of vertices in each side is now 72 = n'/?. Thus, the maximum degree
in G is bounded by 72?, hence the new cover problem is indeed an n” — DBSC instance. A
cover in G would consist of n# covers, one for each copy of GG. Thus the optimum size of the

cover in G is exactly n# - s*, where s* is the size of the optimum cover of G.

Recall that the set-cover problem cannot be approximated within ratio clnn. If the
n? — DBSC problem can be approximated within a ratio better than ¢ - p - Inn, then the

algorithm will produce a collection of n* covers of G, whose collective size is bounded by:
c-p-Inn-n*-s*=c-lnn-nt-s*

By an averaging argument, one of these covers contains at most ¢ - Inn - s* vertices, contra-
dicting Theorem 2.2. |

In the sequel we estimate the probability of the deviation of some random variables from
their expectation, using the Chernoff bound [C-52]. The Chernoff bound will be used later
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in order to bound the expected size of some collection C. U D, of “undesirable” cycles from

above .
In the next lemma we use exp(§) for ¢°. The following holds true for any § > 0.

Lemma 2.4 [C-52] Let X1, Xy, ..., X,, be independent Bernoulli trials with P(X; = 1) = p;.
Let X =37 X, and p= 31" pi. Then

P(X > (1+0)p) <

eop(d) 1"
o]

The following is derived from the Chernoff bound (c.f. page 72 in [MR-95]).

Suppose that p = Q(n”) for 0 < p < 1. Then for any constant ¢, there is a constant ¢;
such that IP(X > p+ ¢/ -logn) < 1/nc.

For example, we see that IP(X > 2 u) < 1/n?, for a large enough n.

Corollary 2.5 Suppose that ;1 = n” as above. Then for any (fized) ¢ > 0 for a large enough
n, P(X >2-p)<1/n 1

3 A hardness result for any £ > 5 in the unweighted

case

In this section we prove our hardness result for the unweighted case. Due to technical reasons,
the proof is divided into three parts. First we prove the result for £ > 5. Then we prove
the result for £ = 3 and & = 4. These results show hardness of approximation on bipartite

graphs. Finally, we prove the result for £ = 2 (this hardness result is for 3—colorable graphs).

We consider the hardness of approximating the k—spanner problem for constant odd £,
k =2t+1 and t > 2. The constructed graph is bipartite, thus it contains no odd cycles. It
follows that any (2¢ 4+ 2)—spanner in such a graph is a (2t + 1)—spanner as well, since the
graph has no (2t + 3)—cycles. Hence, the lower bound on the approximability for k£ = 2t + 1
on bipartite graphs will automatically imply a lower bound for k£ = 2¢ + 2.

3.1 Intuition

Before describing the construction, we discuss some intuition. Consider the graph G(V;, V3, E)
of the set-cover problem. Suppose we form a complete bipartite graph Bip by introducing a

new set A of n vertices and connecting all the vertices in A to all the vertices in V;; hence
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the graph Bip denotes this bipartite clique with A and V; in the two sides. Now, add two
new vertices h; and he. Connect h; to all the vertices in A and h, to all the vertices in
Vi, and add an edge connecting h; and hy. Consider now the structure of a sparse spanner.
In any spanner containing “few” edges, one of the goals is to span the edges of Bip. Note,
however, that it is now possible to add the O(n) edges touching h; and hy to the spanner,

hence spanning the edges of Bip and of h; and hy with a maximum stretch 3.

Moreover, suppose that each vertex in the set A is connected by a collection P of ap-
propriate paths to every vertex of V5. Each such path would have length at most 2¢. The
vertices in these paths all have degree 2, except for two vertices in the middle of each path.
(The middle vertices in these paths will have high degrees in order to ensure, that every
vertex of A is connected by a path in P to every vertex in V5.) The paths in P contain no

vertices of V, or h; or hs.

Next, suppose we can prove that in any spanner close to the optimal, most of the paths

in P have a missing edge.

Thus, in order to find an alternative path for each such missing edge, with a length 2¢+1
or less, one must connect every vertex of A by a path to every vertex of V5, via the vertices
of V} (closing a cycle of length at most 2t 4+ 2 with the missing edge). Namely, each vertex
of A must be connected to each vertex of V, by a path of length 2, which goes through V.
Given a vertex a € A, we see that the collection S, of neighbors of a in Vi, is a cover of V5.
In other words, each vertex in V5 has at least one neighbor in S,. This holds true for every
vertex a € A. Therefore the number of edges needed in the spanner will be roughly n - 3,

where § is the average size of all the sets S,,.

It is therefore convenient for the algorithm to find a small cover S and connect each

vertex in A to S.

The following is a serious technical problem: Consider the case k¥ = 3. Can we simply
choose the collection of paths P to be all the edges connecting a vertex in A to a vertex in V57
This is the case where the collection of paths P is simply a bipartite clique connecting A and
V5. Note, however, that this construction does not give a hardness result for approximating
spanners because a complete bipartite graph can “span itself”, i.e., span all its bipartite
edges without the assistance of the edges of G. In other words, one can add any edge
(a,v9), a € A and vy € V5 to the spanner, and then add all the edges connecting a to the
vertices in V5 to the spanner, and all the edges connecting v, to the vertices in A (this would
give an alternative path with a length 3 for every edge in the bipartite clique). Clearly, we
can thus span all the edges of the bipartite clique by choosing a subset of those edges with
size O(n).



Thus the edges of a bipartite clique can “span themselves” without the assistance of the
graph G induced by V; U V5. Hence, a better collection P of paths is required such that in
any spanner close to the optimum size, most paths in P would have a missing edge, such
that the only efficient way of spanning all the missing edges of the paths of P would be to
use the edges of G.

3.2 The construction for k£ > 5

In this subsection we describe the construction for the k—spanner problem in the case of
constant odd k > 5. Let k =2t+1, t > 2.

Let € > 0 be a constant satistying:

<e<l1 = (1)
%11 ¢ 2% + 2

Let § = (2t 4+ 1)(1 — €). We note that by definition of e:

2t +1
0=02t+1)- (1—-¢)<——=1
2t+1)-1-g<g——7=1
and 2t+1 1
0=2t+1)- (1 —¢) > =1- >
(@t+1)-1-¢ 2t 42 2t+2  °
hence, € < 0 < 1. In addition, let d; be a constant satisfying:
max{d,1 —¢/3} < d; <1 (2)

We begin the construction with an instance G(Vi, Va, E) of the n*~% — DBSC problem.

1=01 The construction is composed of

That is, the maximum degree in G is bounded by n
two main ingredients: the fized part and the gadgets part. The fixed part contains the graph
G and the set A. We clique A and V; as explained above (we connect each vertex a € A to
each vertex v; € V7). Furthermore, we have two special vertices: hy, hs. The vertices hy and
hs are joined by an edge. Then, hy is connected to each vertex of A, and hs is connected to
each vertex of V;. The role of hy, hs is to span the edges connecting the vertices of A to the

vertices of V7, with stretch factor 3.

Secondly, we describe the “gadgets part” of the construction. This part of the construc-
tion is intended, as described above, to connect each vertex in A to each vertex in V5, by a
path of length 2.



The construction of the gadget involves randomization. We note that the construction

can easily be derandomized. The gadget is a union of 4 - Inn - n¢ different gadgets.

For 1 <i <4lnn - n° take the following steps:

e Define sets A%, AL, ..., Al each of cardinality n. The sets corresponding to different ¢

are disjoint.

For each 4, the set A is matched (connected in a perfect matching) to the set A%. The
set. A} is matched to the set A}, and in general, the set A} is matched to the set A%,

forevery 1 <j<t—1.

o Define sets Vi, Vy,,...,Vy, |, each the size of n. The sets corresponding to different
1 are disjoint.
The sets V5 and V3, are matched. In addition, the sets V3'; and V5, are matched, for

each 1 < j < t—2. Call all edges of the perfect matchings (as well as those above which

match A% with A%, ) “matching edges.” These are the edges marked M in Figure 1.

e Finally, for every vertex a! € Al and every vertex Ué,t_l € V;;t_l, put an edge between

al and véytfl randomly and independently, with probability 1/n¢. Let R; denote the

collection of random edges resulting among the two sets V, | and Aj.

See Figure 1 for an example in the case £ = 5. We note that for each vertex a € A and
gadget 4, there is a unique vertex a! € A} which is connected to the vertex a via a path which
goes entirely through the matching edges. For this reason, we throughout the paper call a} a
matched copy of a. Similarly, every vertex v, € V5 has a unique matched copy véyt,l € V;,t,l

in any gadget 1.

It is easy to verify that the constructed graph is bipartite.

3.3 Cycles containing R; edges

In this section we move towards proving that there exist spanners with a number of edges
close to the minimum possible which contain none of the edges of R;. We are particularly
interested in the cycles with lengths 2¢ + 2 or less and containing edges of R;, because these
cycles can help span the edges of R;. In other words, given a short enough cycle containing
an edge e € R;, we can choose all the other edges in the cycle, except e and span e (in the

sense that we now have an alternative path with a length of 2¢ + 1 or less for e).



Figure 1: The fixed part and the ¢th part of the gadget for K = 5. M indicates a matching. C'
indicates a bipartite clique. R; indicates the collection of edges included by the randomized

choice.
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One point we should prove, for example, is that the edges of R; cannot span themselves
efficiently. Unlike a bipartite clique, there is no efficient way of choosing a small subset of
the R; edges so that these chosen edges help span “many” of the other unchosen R; edges.
We prove this simply by showing that the number of cycles containing only edges of R; is

small. Similarly, we count the number of other “undesirable” cycles.

It would follow that if the edges of R; cannot span themselves, each edge of R; should
be spanned using a path from A} to Vy,_,, which passes through A, V; and V5. Denote by
B the collection of all such paths. More specifically, a path P € B starts at a matched copy
ai € Al of a vertex a € A. Then P goes to the sets AL |, A , ... A! via the matching
edges. P then goes to a, then to a vertex v; € G, and then to a neighbor (in G and G)
vy € V5 of v;. Finally, the path continues to the matched copy Ué,t—l of vg, via the matching
edges. (Note that the path does not pass through h; and hy). Note that the edge (af, v5,_;)
(if present) closes a cycle with length exactly 2t + 2 with P. Let B, denote the collection
of such cycles. Call each path P € B for short (respectively, each cycle C' € B.) a B—path
(respectively, a B.—cycle.) In addition to the B—cycles, we show that the other cycles are
either too long and cannot play a part in a spanner, or, among the other short cycles, there
are only few such cycles and these cycles can have only a limited impact on the number of

edges in a sparse spanner.

Let us first make some observations regarding short cycles containing edges of R; in the

construction. In addition to the B.—cycles we have the following:

1. First, one may try to construct a cycle which contains R; edges, and remains in the
“left side” of the construction. More specifically, this is a cycle which begins at a vertex
vy, 1 € V4, 1, continues to two matched copies af and b}, of a,b € A, then goes in
parallel via the matching edges to @ and b, and closes at a mutual neighbor v; € V; of

a and b.

Note, however, that the length of the path leading each vertex in V2i,t—1 to Vi through
A, is t+2. Hence, any cycle containing two edges of R;, two vertices of A, and a vertex
of Vi has length 2¢ + 4. Such a cycle cannot serve as an alternative path for an edge
in Rz

2. Secondly, consider a cycle containing edges from R; and Ry, for [ # i (i.e., via two
different gadgets.) Such a cycle would contain one or two edges from R;, and the
same number of edges from R;. The minimum length of such a cycle is exactly 4t¢.
For example, one can construct such a cycle in a parallel route using two different

matchings, from R; to V5, and then continue in parallel to R;. Note, however, that

11



4t > 2t + 2. This follows since ¢ > 1 (this is precisely the place where the construction
fails for k = 3 and t = 1).

We now see that the only appropriate cycles (having a length bounded by 2t + 2) con-
taining an edge of R; are the following:

(B) the B.—cycles;

(C) cycles containing only edges of R;. Name the collection of such cycles (in all the gadgets)

C. and call such cycles C.—cycles;

(D) cycles containing edges of R; and G, and none of the vertices of A. More specifically,
one can choose a vertex v; € Vi. Choose two neighbors vy, us of vy in V5, move in
a parallel route using the matching edges to the two matched copies v5, | of v, and
ub, , of ug in V3§, |, and finally close the cycle using a mutual neighbor aj € A}, of
Ué,t—l and U’é,t—l' Name the collection of such cycles (in all the gadgets) D, and call

such cycles D.—cycles.

In the following lemmas we bound the (expected) size of C. and D...
We first deal with C.. Call the graph induced by the R; edges Gg,.

Lemma 3.1 The expected size of C. is bounded by O(n't?).

Proof: Any cycle in R;, with a length of j < 2t+ 2 or less includes j vertices of Gg,, j/2 on
each side. In addition, any choice of subset of j/2 vertices in each side of Gg,, for j < 2t+2,
may lead to a cycle of the appropriate length. (We note that when choosing, one must take
the order of the vertices into account). The number of choices (counting the order) of j/2

vertices in a given side is less than n’/2.

The probability of a cycle with a length of j “surviving” the random choice (i.e., the
probability that all its edges are included by the random choice) is 1/n’. Recall that, by
definition, 0 = (2t+1)(1—¢). By defining an appropriate indicator variable for any candidate
cycle, we find that the expected size of C, is clearly bounded by:

2t+2

Alnn-nc- Y it (3)
j=4

The largest term in the sum (3) is with j = 2¢ + 2. The number of terms in the sum is
less than 2 - ¢. Hence we get that the expected size of C, is less than:

(2t+2)(1—¢) (2t+1)(1—¢)

4lnn-2-t-n-n =4lnn-2-t-n-n
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The required claim follows by the definition of 6. 1

Next we must bound the expected size of D.. First, however, we need the following claim
derived directly from the Chernoff Bound [C-52].

For every two vertices vy, ; and uh, ; in V3, |, let m(vy, |, uy, ;) be the number of
mutual neighbors v, | and u}, | have in Aj. Let m denote the maximum of m(vy, ,uy, ),

taken over all values of 7, and pairs of vertices in V2i,t—1- We bound m as follows:

Claim 3.2 For a large enough n, with probability of at least 1 — 1/n?, m < 2-n'=2%,

Proof: For every two vertices v, , and ub,_,, let Neig(v}, ;,ub, ;) be the random variable

which counts the number of mutual neighbors in A

The random variable Neig(vh, |, ub, ;) has a binomial distribution with 7 trials, and a

probability of success 1/n?¢. This is because of the following reasons.

There are n candidate mutual neighbors of Ué,t_l and uéyt_l in AL Let N,; denote the
event that a; is a mutual neighbor of the two vertices vy, ; and uy, ;. For each such
candidate a} € A, the two corresponding edges (which belong to R; with probability 1/n¢
each, independently of each other), should appear in R;. Moreover, the pairs of edges
corresponding to different aj and b} are disjoint. This tells us that the two events N,; and

Ny are independent.

In summary, the expectation of Neig(vs, |,ub, ), E(Neig(vy, |,u}, |)),is n'~>. Thus
according to Corollary 2.5, for every n large enough, IP(Neig(vy, |, ub, ;) > 2-n'"%) <
1/n®.

It follows that m is bounded by 2 - n'~%¢ with a probability of at least 1 — 1/n?. This is
because the number of pairs véytfl and ué,tfl in any gadget is less than n®, as the number of

gadgets is o(n) and there are n* pairs of vertices (v}, |,ub, ;) in each gadget. |1

We now bound the size of D,.. Using the above description (see (D)), we count the number
of these cycles as follows: Choose a vertex vy in V; (n options). Select two neighbors ve and

uy of v1. Since the maximum degree in G is bounded by n'~%*, the number of possible v, and
2-2:0;

uy pairs is bounded by n . Choose a gadget (O(nf) options) and go using the matching
edges to the two matched copies Ué’tfl and uéytfl of vy and uy. Select a mutual neighbor a’
of v}, | and uy, ;. According to the above corollary, there is a high probability that the

number of such a! neighbors is bounded by O(n!~2).

Hence, with high probability, the size of D, is bounded by

n-n*"F0m)0(n'7%) = O (4)
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0(n1+51)

The last inequality holds since 1 — ¢/3 < 0; by definition.

We summarize (using the fact that by definition n® = o(n)).

Corollary 3.3 The expected size of C. U D, is bounded by o(n'™). 1|

3.4 The lower bound

In this section we prove the lower bound using Corollary 3.3. First we need the following
technical lemma, which states that all the vertices of A are connected to all the vertices of
V5 via a path which goes entirely through the matching edges and R; edges. For the sequel,
call this type of path a “proper” path.

Lemma 3.4 With probability at least 1 — 1/n? for every pair of vertices a € A and vy € Vs,
there exists a gadget i such that the edge (al, Ué’tfl) was included by the random choice. Hence

with probability of at least 1 — 1/n?, each (a,ve) pair is connected via a proper path.

Proof: Consider any matched copy a of ¢ and a matched copy vh, ; of vy. An edge is
present between these two vertices with probability 1/n¢. Therefore the probability that for

any 7, all these edges are missing, is bounded by:

(1 o i)4-lnn-n5 < i (5)

ne nd

Thus, for a given pair a and v,, the probability that ¢ and v, are not connected by a
proper path is less than n—14 By summing up these probabilities, the probability that any of
these two vertices will not be connected by a proper path is bounded by 1/n? as required.

This follows since there are n? pairs of vertices (a,vs) with a € A, vy € Vo. 1

In the sequel we assume that the total size of C. and D, is indeed bounded by o(n!*t)
as stated in Corollary 3.3, and that the implied part in Lemma 3.4 holds firm. On the one
hand, the required properties can be guaranteed with fixed probability using the Markov
inequality (cf., [MR-95]). This inequality is needed primarily in order to bound the size of
C.. Thus, we may find that, say, with a probability of at least 9/10, the quantity |C.| + |D.|
is bounded by o(n'™), while Lemma 3.4 holds as well. In turn, one can derandomize the

O() In other

construction using the method of conditional expectation [S-87] in time n
words, it is possible to deterministically construct a structure with the desired properties in

polynomial time, for fixed k.
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Using these assumptions, we can state our two main claims. Let s* be the size of an
optimum cover in G. Note that since G is an instance of the (1 — d;)—set-cover problem,
s* > nd.

Lemma 3.5 For a large enough n, the instance G of the (2t + 1)—spanner problem admits

a (2t + 1)—spanner with no more than 2 - s* - n edges.

Proof: Introduce the edges touching hq, ho and the edges of G into the spanner. The number
of edges added so far is O(n?%). We have thus spanned the edges of the fixed part of the
construction. The edges touching h; and hy and the edges of G are spanned with stretch

factor 1, while the edges connecting A and V) are spanned with stretch factor 3.

Bring all the matching edges into the spanner. The number of edges added here is

O(t-n'*€) = O(n'*) (the last equality is valid for fixed ¢ or even for ¢ = O(log n) as in our

case).

It only remains to span the edges of R;. Choose a cover S* C V; of Vj of size s*. Connect
all the vertices of A to all the vertices of S*. It is easy to check that all the edges of R; are
spanned by an alternative path P € B with length exactly 2¢ + 1. Note that the number of
edges in this spanner is s* - n 4+ O(n't¢) + O(n?>~). Now, since n° = o(n’'), 6, > 1/2 and

s* > nd%, the claim follows for large enough n. |

Lemma 3.6 For alll > 0 and large enough n, given a (2t +1)—spanner H(V, E') in G with
no more than | - n edges, there ezists a (polynomially constructible) cover S of Vay of size 21

or less.

Proof: We show how to modify H so that all the edges of R; are spanned by a B—path. In
this modification, we somewhat increase the number of edges in H; however we prove that
the increase is slight. Once all the edges of R; are spanned by a B—path, we show how to

deduce a small cover of V5 from this modified construction.

Starting with H, change to a new (2t + 1)—spanner H' as follows: First, add all the edges
touching h; and all the edges touching hy (if they are not already there) to H. Similarly,
add all the matching edges and the edges of G.

Now consider the edges in R;NE’, i.e., the edges of R;, which are in the spanner. Remove
each such edge (af, v,_,) joining a matched copy aj of a to a matched copy vj, ; of v,. In
the present situation, several of the R; edges may be unspanned. Those are edges in R;
which belong to a C.—cycle or a D.—cycle. Recall, however, that we have already shown
that there are only few such cycles. This immediately implies that only few of the edges in

R; are not spanned now. Add an arbitrary alternative B—path P € B for each such edge.
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Note that such a path exists since we assume that V; covers V. The resulting graph H' is

still a legal (2t + 1)—spanner.

Note that (aside from the matching edges) for every cycle in C. U D, we may have added
two additional edges to H', one joining a vertex a € A and a vertex v; € Vi, and the other
joining the vertex v, to a vertex vy € V5. These are the two relevant edges from the B—path
P. Let num denote the number of edges in the new resulting spanner H'. According to

Corollary 3.3, num is bounded above by

num < 1-n+0(t-n**e) + o(n'™) + O(n* ). (6)

Note that the only way now to span the R; edges is by using a B—path.

Recall that, according to Lemma 3.4, for every vertex a € A and v, € V5 there are
matched copies véyt_l and a! of vy and a, which are neighbors in R;. Since the edge e =
(v5, 1, a}) is missing from H', we must span this edge via a B—path P. It follows that a is
connected to a neighbor v; € V; of vy. In other words, the set S, of neighbors of @ in V; in

the spanner H' is a cover of V5 in G.

On the one hand, note that the number of edges num in H' is bounded below by

num > Y |G, > n-s* > n' 0 (7)
acA

which implies that num > n!'*%. Now, since € < §; and 6, > 1/2, we combine Equations 6
and 7 to deduce that
0 < -+ o(ntt), (8)

From Equation 8, we deduce that 2{ > n% for a large enough n.

On the other hand:
num > Y |S,|. (9)

acA
By averaging, we find that there is a cover S, of the size num/n or less. Therefore the size
of this set S, is bounded by [+ O(t - n¢) + o(n’*) + O(n'~%) < 2[ (the last inequality, again,
follows for large enough n since [ > n’t/2).

Thus we may choose S, as the required cover. |

The main theorem is now derived easily. For this theorem let ¢ be a constant such that

it is N P—hard to approximate set-cover within ratio clnn.
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Theorem 3.7 The k—spanner problem for k > 5 cannot be approximated within ratio

c(1—14)
8

-lnn

unless P = NP.

Proof: Again, it is only necessary to prove this result for odd values, k =2t+1, ¢t > 2, of k
and n large enough. Assume an algorithm 4 that has the stated ratio. Let G be an instance
of the n1=9) — DBSC' as described above. Let s* be the size of the minimum cover of V3 in
G. Construct an instance G of the (2t + 1)-spanner as described. According to Lemma 3.5,
the graph G admits a spanner with 2-s*-n edges. The number of vertices, 7, in G is é(nlJrf).
Thus, Inn < 21nn for n large enough. The theorem therefore assumes that the algorithm A

would produce a spanner of size less than (¢(1—01)/8)-2-Inn-2-s*-n = (¢(1—01)/2)-lnn-s*-n.

Let [ = (¢(1 —81)/2) -Inn - s*. According to Lemma 3.6, one derives a cover with a size
at most ¢(1 —6y) - Inn - s* from this construction (in polynomial time). This contradicts
Lemma 2.3. 1

4 The case k=3 and k£ = 4, and the case k = 2

4.1 The case k=3 and k=4

We begin with the case £ = 3 and k£ = 4. Again we have a fixed part and a gadget part in
the construction. Let €, § and d; be defined by Inequalities (1) and (2), with ¢ = 1. Here we
need the additional assumption that (1+¢)/2 < §; < 1. Again, begin with a n*=%) — BDSC
instance, G(Vi, Vo, E'). The fixed part has a copy of V] and the set A of n vertices. These
two sets are cliqued. As before, we introduce two vertices h; and hy that take care of the

bipartite clique edges.

Let ¢ = O(nf). We have now ¢ copies of Vo, Vit ..., Vi, ie., V5 belongs to the gadget
part in this construction. Form ¢ copies of G' by appropriately connecting V; and V3 for each

1.

In addition, add g sets A° of size n. Each set A’ is matched with A. Finally, draw an
edge between each vertex a; € A® and v§ € Vi |1 < s < ¢, with probability 1/n¢.

Again, there is a high probability that for each vy € V, and a € A there is a copy A° of
A and a copy VZJ of V5, such that the two vertices v% and a; corresponding to v, and a share
an edge. In a proof similar to the one in Lemma 3.6 it is possible to show that there exist a

spanner close to the optimal, containing no R;—edges. Hence, the hardness of approximation
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follows here in a way similar to the case of & > 5. The only difference is that we add O(n)

2—01+e€

copies of GG into the spanner; i.e., we add n edges to the spanner. However, we only

have to verify that 2 — d; + ¢ < 1 + d;, which holds by the additional assumption.

Corollary 4.1 For any fized k, k > 3, there exists a constant ¢ such that the k—spanner

problem restricted to bipartite graphs is NP—hard to approximate within ratio clogn. |

4.2 The case k =2

In order to prove a hardness result in the case k£ = 2, we simply take the fixed part of the
construction for £ > 5 without the vertex hy. We also connect h; to all the vertices in V)
(note that h; is now connected to all the vertices of AUV].) Finally, we clique A and V5. As
before, a sparse spanner is derived by choosing the edges touching h,, the edges of G’ and the
edges connecting A to a minimum cover S* of V5. Furthermore, the construction of a small
cover given a sparse spanner is obtained by inspecting the way the edges connecting A and
V; are spanned. Therefore, a hardness result similar to the above follows easily, except that
the graph is only 3—partite, i.e., 3—colorable (in a bipartite graph the only 2—spanner for
the graph is the graph itself, hence the 2—spanner problem is trivial on bipartite graphs).
Combined with the result of [KP-92] we arrive at:

Corollary 4.2 Unless P = NP, the best polynomial approzimation algorithm for the 2—spanner

problem has a ratio of O(logn) even when restricted to 3—partite graphs. |1

5 The weighted case

In this section we deal with the following weighted version of the spanner problem. We are
given a graph G with a weight function w(e) on the edges. We assume the length of each edge
to be 1. That is, once again, in every k—spanner, a missing edge should be replaced by a
cycle containing k edges or less. Here, however, we measure the quality of the spanner by its
weight, namely the sum of the weights of its edges. We look for a k—spanner with minimum
weight. In this section we prove an essential difference between the approximability of cases
k = 2, and k > 5, i.e., we prove that for k£ = 2, this version of the problem admits an
O(logn) ratio approximation. However, for every k > 5, the problem has no 2log’ “n_ ratio
approximation, unless NP C DTIME(nP°¥'°ev) This, for example, indicates that it is
unlikely that there would be any polylogarithmic ratio approximation for the edge-weighted

k—spanner problem, for k > 5.
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5.1 The case k =2

In the weighted 2—spanner problem, one looks for a minimum weight 2—spanner, namely,
a low weight subgraph G’ where every missing edge closes a triangle with two edges that
do belong to G'. We find out that a method similar to the one employed in [KP-92] for
approximating the unweighted case is suitable for approximating even this more general

case.
We sketch the variant of the method of [KP-92| required here.

We say that a vertex v 2—helps an edge e = (w, 2) in G" if the two edges (v, w) and (v, 2)
are included in G’, i.e., in G’, there is an alternative path of length 2 for e that goes through

V.

The idea is to find a vertex v that 2—helps many edges of E, using low weight. Consider
each vertex v € G. Let N(v,G) be the graph induced in G' by the neighbors N (v) of v. For
every neighbor z of v, put weight w(e) on z in N(v,G), where e = (z,v). For any subset
of the vertices V' C N(v), let e(V') denote the number of edges inside V', and let w, (V')
denote the sum of weights of the vertices of V', in N(v,G). We look for a vertex v and a

subset V' C N(v) that achieves the following minimum:

win i, {557

It is important to note that the pair v, V' achieving this minimum can be found in

polynomial time using flow techniques (cf. [GGT-89]). Given v and V', one adds the edges
connecting v and V' to the spanner. Note that in this way we 2—help (or span) all the edges

internal to V', using low weight. This is done in iterations until the edges are exhausted.

It follows from a proof similar to that in [KP-92] that this greedy algorithm is an
O(log(]V]))—ratio approximation algorithm for the edge-weighted 2—spanner problem. De-

tails are therefore omitted.

Theorem 5.1 The edge-weighted 2—spanner problem, in the case {(e) = 1, for every edge

e, admits an O(log(|V'|))—ratio approzimation algorithm. 1

5.2 The case k> 5

In this subsection we consider the edge-weighted k—spanner problem, for £ > 5, in the special
case where ((e) = 1 for every edge e. We essentially prove hardness by giving a reduction

from a one-round two-prover, interactive proof system. For simplicity, however, we abstract
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away the relation to the interactive proof and describe the problem from which we reduce
in the following simpler manner. There are two versions of the problem, a maximization

version and a minimization version.

We are given a bipartite graph G(V1, V2, E). The sets V; and V5, are split into a disjoint
union of k sets: V; = Ule A; and V, zle U B;. The sets A; and B; all have size N.

The bipartite graph and the partition of V|, and V5 induce a super-graph H in the following
way: The vertices in H are the sets A; and B;. Two sets A; and B; are connected by a
(super) edge in #H iff there exist a; € A; and b; € B; which are adjacent in G. For our
purposes, it is convenient (and possible) to assume that graph # is regular. Say that every

vertex in H has degree d, and hence, the number of super-edges is h = k - d.

In the maximization version, which we call Max-rep, we must select a single “representa-
tive” vertex a; € A; from each subset A;, and a single “representative” vertex b; € B; from
each B;. We say that a super-edge (A;, B;) is covered if the two corresponding representa-
tives are neighbors in G, i.e., (a;,0;) € E. The goal is to select a single representative from

each set and maximize the number of super-edges covered.

Let us now recall the satisfiability (SAT) problem. A CNF boolean formula I is given,
and the question is whether there is an assignment satisfying all the clauses. The following
result follows from [FL-92]. It can also be deduced from [R-95].

Theorem 5.2 Let I be an instance of SAT. For any 0 < € < 1, there exists a reduction of
each instance of the satisfiability problem, to an instance G of Max-rep of size n, such that if
1 1s satisfiable, there is a set of unique representatives which cover all h =k - d super-edges,
and if the formula s not satisfiable, in the best choice of representatives, it is possible to

1—e

cover no more than h/2'°¢ "™ of the super-edges. |

In the above reduction, n is polylogarithmic in the size of the SAT formula. The following

easily follows from Theorem 5.2.

Theorem 5.3 Unless NP C DTIM E(nP°Y°8%) - Maz-rep admits no 208" " _yatio approx-

imation, for any e > 0. |

We need a slight minimization variant of Max-rep, which we call Min-rep. In this case
the goal is to choose a minimum size subset C C V; U V5. Unlike the maximization version of
the problem, in the minimization version of the problem, one may choose to include many
vertices of each set A; and B; in C . In Min-rep one must cover every super-edge, i.e., for
each super-edge (A;, B;) there is a pair a; € A; and b; € B;, both belonging to C, such that
(a;,b;) € E.
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A limitation on the approximability of Min-rep, similar to that of Max-rep, follows easily
from Theorem 5.2. The reduction here is rather standard. It is also implicit in [LY-93].

However, for the sake of completeness we describe the reduction.

The hardness of Min-rep follows from the following observation. Say that you have a
solution C for Min-rep with ¢ representatives. On average, there are t/2k representatives
in each A; and B;. Therefore, there are no more than k/2 sets A; or B; containing more
than 2t/k representatives of C. In removing these sets from 7, one deletes no more than
h/2 = d - k/2 super-edges. Let H' denote the resulting super-graph. Thus, at least h/2

super-edges are internal to H'.

Draw a single representative uniformly at random for each A; (resp., B;) in #' . The
expected number of super-edges covered is (at least) h - k*/8t*. The randomization in the

choice can be removed using the method of conditional expectation.

Now, assume there exists an [—ratio approximation algorithm for Min-rep. Consider the
reduction from I to G described in Theorem 5.2. If I is a “yes” instance of SAT, then there
exists in G a proper system of representatives C for Min-rep of size 2k (a single vertex can
be chosen from each set). The assumed algorithm will produce a solution for Min-rep of a

size no larger than 2 -k - [.

On the other hand, it follows from the above discussion that if I is a “no” instance for

SAT, the solution for Min-rep produced by any algorithm is of size at least

1—e

k- 21/2-10g n
R
- 2V/2
since otherwise, we get a solution to Max-rep covering hk?/(8t2) > h/2'%6 """ super-edges.

Therefore,

Theorem 5.4 Unless NP C DTIM E(nP°¥'°ev) - Min-rep admits no 208" " _ratio approa-

imation algorithm, for any e > 0. 1

We now give a reduction from Min-rep to the edge-weighted 5—spanner problem. The
reduction for £ > 5 is similar. Let G = (V, E) be an instance of Min-rep with each A;, B;
of size N. We build an instance G of the edge-weighted 5-spanner as follows: Add G into
G. Give the edges of G weight 0. Match each set A; to a new set S; and give these edges
weight 1. Match each set B; to a new set Tj. These edges are also given weight 1. Then,
introduce a new vertex v; (resp., a new vertex u;) that is adjacent with edges of weight 0, to
all vertices A; (resp., all the vertices of S;). The vertices v; and u; are joined by an edge of
weight 0. Finally, for each B; we introduce a vertex z; (resp., w;) joined to all the vertices

of B, (resp., of Tj). Again, z; and w; are joined by an edge, and all the edges touching w;
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and z; have weight 0.

Now, for every super-edge (A;, B;) clique the set S; to a new set X;; of size IV, and clique
each set T to a new set Yj; of size N with edges of weight 0. Finally, clique each pair Xj;
and Y;; with edges of weight (NN - k)2, each.

It easily follows that no edges connecting X;; and Y;; are to be included in a good spanner.
Hence, the only way to span an edge connecting X;; and Y;; is via a path of length 5 that
goes through a vertex a; € A; and a vertex b; € B;. Given a sparse spanner, vertices a;
and b; which participate in such a path can be chosen into C. In this way one gets a set
of representatives C which is a solution for Min-rep. It is clear that C covers all super-
edges. In addition, the weight of the spanner is exactly |C|, since we have extra weight of 1

corresponding to the matching edge for each vertex in C.

In the other direction, suppose we are given a small subset C of representatives which
covers all the super-edges. We get a sparse spanner as follows: let (A;, B;) be a super-
edge. Choose a pair a; € A, NC, b; € B;NC, (a;,b;) € E. Add an edge from q; to the
corresponding vertex s; € S;. Add all the edges from s; to X;;. Add an edge from b; to the
corresponding vertex t; € T;. Add all the edges from ¢; to Yj;. Finally, add all the edges

touching v;, u;, zj, w;. Clearly, this establishes a 5—spanner of weight |C|.

Since the constructed graph is bipartite, the following corollary easily follows from The-

orem 5.4.

Corollary 5.5 Unless NP C DTIM E(nP°¥'°e")  the edge-weighted k—spanner problem, for

k > 5, admits no 208" 1 _pytio approximation, even when restricted to bipartite graphs.

In conclusion, the main open question is whether a similar “gap” in the approximability
of £k = 2, and £ > 5 is valid in the unweighted case as well. The goal is to either prove
evidence for such a gap, or give logarithmic ratio approximation algorithms for fixed values

of k. The cases k = 3 and k& = 4 also deserve attention.
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