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1 IntroductionThe concept of graph spanners has been studied in several recent papers in the contextof communication networks, distributed computing, robotics and computational geometry[ADDJ-90, C-94, CK-94, C-86, DFS-87, DJ-89, LR-93, LS-93, PS-89, PU-89, RL-95]. Con-sider a simple connected graph G = (V;E), with jV j = n vertices. A subgraph G0 = (V;E 0)of G is a k � spanner if for every u; v 2 V ,dist(u; v; G0)dist(u; v; G) � k;where dist(u; v; G0) denotes the distance from u to v in G0, i.e., the minimum number ofedges in a path connecting them in G0. We refer to k as the stretch factor of G0.In the Euclidean setting, spanners were studied in [C-86, DFS-87, DJ-89, LL-89, ADM+95].The �rst paper to consider spanners was [C-86] dealing with the construction of spannersfor sets of points in the Euclidean plane. The [C-86] paper proved that any set of points inthe plane has a p10�spanner with an edge density jEj=jV j of less than 3. This result hasimplications for the problem of motion planning in the plane. Spanners for general graphswere �rst introduced in [PU-89], where it was shown that for every n�vertex hypercubethere exists a 3-spanner with no more than 7n edges. Spanners were used in [PU-89] toconstruct a new type of synchronizer for an asynchronous network. Spanners are also usedto construct e�cient routing tables [PU-88]. Each node of such a network is a processorwith some local memory. The processors in the network communicate, thus an e�cient rout-ing scheme should be able to use a short path to send messages through the network whilekeeping the routing information stored in the processors as succinct as possible. In [PU-88]a technique based on spanners is developed for this goal. In [RL-95] it is suggested thatspanners may be used as network topologies. If one has an expensive desired topology, oftena sparse or low-weight (and therefore less expensive) spanner can be substituted, retaininga similar structure with only a slight increase in communication cost. Finally, in [ABP-92]spanners are used to model broadcast operations. Sparse spanners can be used for e�cientbroadcast with respect to the following parameters: the maximum number of messages sent,the total cost of the messages and the worst-case delay incurred for any destination.For this, and other applications, it is desirable that the spanners be as sparse as possible,i.e., have as few edges as possible. This leads to the following problem: Let Sk(G) denote theminimum number of edges in a k�spanner for the graph G. The sparsest k-spanner probleminvolves constructing a k�spanner with Sk(G) edges for a given graph G.It is shown in [PS-89] that the problem of determining, for a given graph G = (V;E) and1



an integer m, whether S2(G) � m is NP�complete. This indicates that we are unlikely to�nd an exact solution for the sparsest k�spanner problem even when k = 2. In [C-94] thisresult is extended to hold for any integer k � 3, even when restricted to bipartite graphs.Recently, in [VRM+97] it was shown that the k�spanner problem is hard even in otherrestricted cases. More speci�cally, it was shown there that the problem is NP�completeeven when restricted to chordal graphs, for any k � 2 (a graph is chordal if any cycle oflength at least 4 has a chord, namely, has an edge connecting two non-adjacent vertices inthe cycle). They also show that the problem is NP�complete on split graphs, for k = 2(a split graph contains a clique C and an independent set I, with arbitrary connectionsbetween the vertices of C and I). The paper also gives relatively simple proofs that theproblem is NP�complete on bipartite graphs, as well as on bounded-degree graphs (graphswhere the degree is bounded by some �xed constant). This somewhat simpli�es the proofsin [C-94, CK-94]. Finally, in [BH-97] the problem is proven NP�complete on planar graphsfor any k � 5.Consequently, two possible remaining courses of action for investigating the problem areestablishing global bounds on Sk(G) and devising approximation algorithms for the problem.In [PS-89] it is shown that every n�vertex graph G has a polynomial time constructible(4k + 1)�spanner with O(n1+1=k) edges or in other words, S4k+1(G) = O(n1+1=k) for everygraph G. Hence, in particular, every graph G has an O(logn)�spanner with O(n) edges.These results are close to the best possible in general, as implied by the lower bound givenin [PS-89] in the sense that there are graphs with S4k+1(G) = 
(n1+
(1=k)).The results of [PS-89] were improved and generalized in [ADDJ-90, CDNS-92] to theweighted case, in which there are non-negative weights associated with the edges, and thedistance between two vertices is the weighted distance. Speci�cally, it is shown in [ADDJ-90]that given an n�vertex graph and an integer k � 1, there is a polynomially constructible(2k + 1)�spanner G0 such that jE(G0)j < n � dn 1k e. They also show that the weight (sumof weights of the edges) of the constructed spanner is close to the weight of the minimumspanning tree. More speci�cally, w(G0) � O(nO(1=k)) �w(MST ) where w(MST ) is the weightof a minimum spanning tree.The algorithms of [ADDJ-90, PS-89] provide us with global upper bounds for sparsek�spanners, i.e., general bounds that hold true for every graph. However, it may be thatconsiderably sparser spanners exist for speci�c graphs. Furthermore, the upper bounds onsparsity given by these algorithms are small (i.e., close to n) only for large values of k. Itis therefore interesting to look for approximation algorithms which yield near-optimal localbounds applying to the speci�c graph at hand, by exploiting its individual properties.2



The only logarithmic ratio approximation algorithm known for constructing sparse span-ners exists for the 2�spanner problem. Speci�cally, in [KP-92] an O(log(jEj=jV j)) approx-imation algorithm is given for the 2�spanner problem. That is, given a graph G = (V;E),the algorithm generates a 2�spanner G0 = (V;E 0) with jE 0j = O �S2(G) � log jEjjV j� edges. Nosmall ratio (for example, polylogarithmic ratio) approximation algorithm is known, even forthe 3�spanner problem. However, the results in [ADDJ-90] indicate that any graph admitsa 3�spanner with girth (minimum length cycle) 5. Now, every graph of girth 5 has O(n3=2)edges. This \global" result can be considered an O(pn) \approximation" algorithm for thek�spanner problem, for k � 3. Note that this bound cannot, in general, be improved. Con-sider a projective plane of order q (cf. [B-86]). A projective plane of order q is a (q+1)-regularbipartite graph with n = q2 + q + 1 vertices on each side, with the additional property thatevery two vertices on the same side share exactly one neighbor. Such a structure is known toexist, for example, for prime q. Clearly, the girth of this graph is 6. Therefore, the only 3�(and 4�) spanner for the graph is the graph itself. Furthermore, this graph contains �(n3=2)edges.In this paper we �rst prove that the (unweighted) 2�spanner problem is NP�hardto approximate even when restricted to 3�colorable graphs, within c logn�ratio for someconstant c < 1. This matches the approximation ratio of O(logn) of [KP-92]. Hencethe algorithm in [KP-92] is the best possible algorithm for approximating the 2�spannerproblem, up to constants.We also show that the (unweighted) k�spanner problem is hard to approximate withinsmall ratio, even when restricted to bipartite graphs. Speci�cally, we prove that for every�xed integer k � 3, there exists a constant c < 1 such that it is NP�hard to approximatethe k�spanner problem on bipartite graphs within ratio c logn (the constant c depends onthe constant k.) This improves the NP�hardness result from [C-94] for �xed values of k. Italso improves, for �xed k, the NP�hardness result for general graphs.Remark: In fact we prove that for any k = o(logn) (not necessarily �xed) there exists aconstant c < 1 such that the k�spanner has no c�logn=k�ratio approximation, unless NP �DTIME(nO(k)). Indeed, for k = logn, the logn�spanner problem can be approximatedwithin ratio O(1) since, as mentioned earlier, there is always a logn�spanner with O(n)edges. Thus, it is mainly interesting to prove hardness results for k = o(logn).Finally, we de�ne a new weighted version of the spanner problem which we believe to benatural. In this version, called the edge-weighted k�spanner problem, each edge e 2 E hasa positive length `(e) but also a non-negative weight w(e). The goal is to �nd a k�spannerG0 with a low weight. Thus, in the �rst place, the graph G0 should have stretch factor3



k, namely, the `�distance of every pair of vertices u and v in G0 should increase by nomore than a factor of k. Second, the sum of weights w(e) of the edges in G0 should be assmall as possible. For example, in the unweighted case, `(e) = w(e) = 1 for every edge e.Also, in the standard weighted case, considered in [ADDJ-90, CDNS-92], for every edge e,w(e) = `(e). The more general version of the problem is useful in the following case. Givena desired network topology as described above, for a given link e = (v; u) the function `(e)may represent the delay in sending messages over e, while the w(e) function may representthe cost incurred in establishing and maintaining a connection between v and u. In thegeneralized version of the problem it is possible to deal with the case that ` and w are notnecessarily identical. The result for the weighted case may give some insight for proving apossible similar result for the unweighted case.For the edge-weighted k�spanner problem we have the following results. We considerthe case where `(e) = 1 for every edge and w is arbitrary. For k = 2, this version of theproblem admits an O(logn)�ratio approximation. However, for every k � 5, the problemhas no 2log1�� n� ratio approximation, unless NP � DTIME(npolylogn), for any � > 0. Thislater result follows by a reduction from one-round two-prover interactive proof system.We note that ours are the �rst results on the hardness of approximating the spannerproblem.2 PreliminariesFirst, recall the following alternative de�nition of spanners:Lemma 2.1 [PS-89] The subgraph G0 = (V;E 0) is a k � spanner of the graph G = (V;E)i� dist(u; v; G0) � k for every (v; u) 2 E.Thus the (unweighted) sparsest k�spanner problem can be restated as follows: We lookfor a minimum subset of edges E 0 � E such that every edge e which does not belong to E 0lies on a cycle of length k + 1 or less, with edges which do belong to E 0. In this case we saythat e is spanned in E 0 (by the remaining edges of the cycle).In the following we say that two (independent) sets C and D are cliqued if every vertexin C is connected to every vertex in D; thus C and D induce a complete bipartite graph. Wesay that C and D are matched if jCj = jDj (i.e., C and D are of the same size) and everyvertex in C has a unique neighbor in D (that is, the two sets induce a perfect matching).
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The set-cover problem: For our purpose it is convenient to state the set-cover problemas follows: The input for the set-cover problem consists of a bipartite graph G(V1; V2; E) inwhich the edges cross from V1 to V2 (that is, V1 and V2 contain no internal edges) with nvertices on each side. The goal is to �nd the smallest possible subset S � V1 that coversV2, namely, the smallest S such that every vertex in V2 has a neighbor in S. We assumethroughout that the entire set V1 covers V2, otherwise the problem has no solution.The following result is known [RS-97]. This result followed two results by [LY-93]and [F-96]. These two results were proven under a weaker assumption, i.e., that NP 6�DTIME(nO(log log n)).Theorem 2.2 [RS-97] There exists a constant c < 1 such that it is NP�hard to approximatethe set-cover problem within ratio c lnn.We require the following lemma regarding a restrictive case of the set-cover problem.Consider the n��degree-bounded-set-cover (n� � DBSC) problem, which is the set-coverproblem in which �, the maximum degree of any vertex in V1 [ V2, is bounded by n�for some (�xed) speci�ed 0 < � < 1. The usual greedy algorithm ([J-74, L-75]) gives a� � ln n�ratio approximation algorithm for the n� � DBSC problem. On the other hand,we have the following:Lemma 2.3 It is NP�hard to approximate the n��DBSC problem within c � � � lnn ratio,where c is the same constant as in Theorem 2.2.Proof: Let G be an instance of the set-cover problem. Denote � = 1� � 1. Now, construct anew instance of the n��DBSC problem by taking n� copies of G. Call this instance of theproblem ~G. The number of vertices in each side is now ~n = n1=�. Thus, the maximum degreein ~G is bounded by ~n�, hence the new cover problem is indeed an n� �DBSC instance. Acover in ~G would consist of n� covers, one for each copy of G. Thus the optimum size of thecover in ~G is exactly n� � s�, where s� is the size of the optimum cover of G.Recall that the set-cover problem cannot be approximated within ratio c lnn. If then� � DBSC problem can be approximated within a ratio better than c � � � lnn, then thealgorithm will produce a collection of n� covers of G, whose collective size is bounded by:c � � � ln ~n � n� � s� = c � lnn � n� � s�By an averaging argument, one of these covers contains at most c � lnn � s� vertices, contra-dicting Theorem 2.2.In the sequel we estimate the probability of the deviation of some random variables fromtheir expectation, using the Cherno� bound [C-52]. The Cherno� bound will be used later5



in order to bound the expected size of some collection Cc [ Dc of \undesirable" cycles fromabove .In the next lemma we use exp(�) for e�. The following holds true for any � > 0.Lemma 2.4 [C-52] Let X1; X2; : : : ; Xm be independent Bernoulli trials with IP(Xi = 1) = pi.Let X = Pmi=1Xi and � = Pmi=1 pi. ThenIP(X > (1 + �)�) < " exp(�)(1 + �)(1+�) #� :The following is derived from the Cherno� bound (c.f. page 72 in [MR-95]).Suppose that � = 
(n�) for 0 < � < 1. Then for any constant c, there is a constant c1such that IP(X > �+ c1p� � logn) < 1=nc.For example, we see that IP(X > 2 � �) � 1=n3, for a large enough n.Corollary 2.5 Suppose that � = n� as above. Then for any (�xed) c > 0 for a large enoughn, IP(X > 2 � �) < 1=nc.3 A hardness result for any k � 5 in the unweightedcaseIn this section we prove our hardness result for the unweighted case. Due to technical reasons,the proof is divided into three parts. First we prove the result for k � 5. Then we provethe result for k = 3 and k = 4. These results show hardness of approximation on bipartitegraphs. Finally, we prove the result for k = 2 (this hardness result is for 3�colorable graphs).We consider the hardness of approximating the k�spanner problem for constant odd k,k = 2t+ 1 and t � 2. The constructed graph is bipartite, thus it contains no odd cycles. Itfollows that any (2t + 2)�spanner in such a graph is a (2t + 1)�spanner as well, since thegraph has no (2t+3)�cycles. Hence, the lower bound on the approximability for k = 2t+1on bipartite graphs will automatically imply a lower bound for k = 2t+ 2.3.1 IntuitionBefore describing the construction, we discuss some intuition. Consider the graphG(V1; V2; E)of the set-cover problem. Suppose we form a complete bipartite graph Bip by introducing anew set A of n vertices and connecting all the vertices in A to all the vertices in V1; hence6



the graph Bip denotes this bipartite clique with A and V1 in the two sides. Now, add twonew vertices h1 and h2. Connect h1 to all the vertices in A and h2 to all the vertices inV1, and add an edge connecting h1 and h2. Consider now the structure of a sparse spanner.In any spanner containing \few" edges, one of the goals is to span the edges of Bip. Note,however, that it is now possible to add the O(n) edges touching h1 and h2 to the spanner,hence spanning the edges of Bip and of h1 and h2 with a maximum stretch 3.Moreover, suppose that each vertex in the set A is connected by a collection P of ap-propriate paths to every vertex of V2. Each such path would have length at most 2t. Thevertices in these paths all have degree 2, except for two vertices in the middle of each path.(The middle vertices in these paths will have high degrees in order to ensure, that everyvertex of A is connected by a path in P to every vertex in V2.) The paths in P contain novertices of V1 or h1 or h2.Next, suppose we can prove that in any spanner close to the optimal, most of the pathsin P have a missing edge.Thus, in order to �nd an alternative path for each such missing edge, with a length 2t+1or less, one must connect every vertex of A by a path to every vertex of V2 via the verticesof V1 (closing a cycle of length at most 2t + 2 with the missing edge). Namely, each vertexof A must be connected to each vertex of V2 by a path of length 2, which goes through V1.Given a vertex a 2 A, we see that the collection Sa of neighbors of a in V1, is a cover of V2.In other words, each vertex in V2 has at least one neighbor in Sa. This holds true for everyvertex a 2 A. Therefore the number of edges needed in the spanner will be roughly n � �s,where �s is the average size of all the sets Sa.It is therefore convenient for the algorithm to �nd a small cover S and connect eachvertex in A to S.The following is a serious technical problem: Consider the case k = 3. Can we simplychoose the collection of paths P to be all the edges connecting a vertex in A to a vertex in V2?This is the case where the collection of paths P is simply a bipartite clique connecting A andV2. Note, however, that this construction does not give a hardness result for approximatingspanners because a complete bipartite graph can \span itself", i.e., span all its bipartiteedges without the assistance of the edges of G. In other words, one can add any edge(a; v2); a 2 A and v2 2 V2 to the spanner, and then add all the edges connecting a to thevertices in V2 to the spanner, and all the edges connecting v2 to the vertices in A (this wouldgive an alternative path with a length 3 for every edge in the bipartite clique). Clearly, wecan thus span all the edges of the bipartite clique by choosing a subset of those edges withsize O(n). 7



Thus the edges of a bipartite clique can \span themselves" without the assistance of thegraph G induced by V1 [ V2. Hence, a better collection P of paths is required such that inany spanner close to the optimum size, most paths in P would have a missing edge, suchthat the only e�cient way of spanning all the missing edges of the paths of P would be touse the edges of G.3.2 The construction for k � 5In this subsection we describe the construction for the k�spanner problem in the case ofconstant odd k � 5. Let k = 2t+ 1; t � 2.Let � > 0 be a constant satisfying:1� 12t+ 1 < � < 1� 12t + 2 (1)Let � = (2t+ 1)(1� �). We note that by de�nition of �:� = (2t+ 1) � (1� �) < 2t+ 12t+ 1 = 1;and � = (2t+ 1) � (1� �) > 2t+ 12t+ 2 = 1� 12t+ 2 > �;hence, � < � < 1. In addition, let �1 be a constant satisfying:maxf�; 1� �=3g < �1 < 1 (2)We begin the construction with an instance G(V1; V2; E) of the n1��1 �DBSC problem.That is, the maximum degree in G is bounded by n1��1 . The construction is composed oftwo main ingredients: the �xed part and the gadgets part. The �xed part contains the graphG and the set A. We clique A and V1 as explained above (we connect each vertex a 2 A toeach vertex v1 2 V1). Furthermore, we have two special vertices: h1; h2. The vertices h1 andh2 are joined by an edge. Then, h1 is connected to each vertex of A, and h2 is connected toeach vertex of V1. The role of h1; h2 is to span the edges connecting the vertices of A to thevertices of V1, with stretch factor 3.Secondly, we describe the \gadgets part" of the construction. This part of the construc-tion is intended, as described above, to connect each vertex in A to each vertex in V2 by apath of length 2t. 8



The construction of the gadget involves randomization. We note that the constructioncan easily be derandomized. The gadget is a union of 4 � lnn � n� di�erent gadgets.For 1 � i � 4 lnn � n� take the following steps:� De�ne sets Ai1; Ai2; : : : ; Ait, each of cardinality n. The sets corresponding to di�erent iare disjoint.For each i, the set A is matched (connected in a perfect matching) to the set Ai1. Theset Ai1 is matched to the set Ai2, and in general, the set Aij is matched to the set Aij+1,for every 1 � j � t� 1 .� De�ne sets V i2;1; V i2;2; : : : ; V i2;t�1, each the size of n. The sets corresponding to di�erenti are disjoint.The sets V2 and V i2;1 are matched. In addition, the sets V i2;j and V i2;j+1 are matched, foreach 1 � j � t�2. Call all edges of the perfect matchings (as well as those above whichmatch Aij with Aij+1) \matching edges." These are the edges marked M in Figure 1.� Finally, for every vertex ait 2 Ait and every vertex vi2;t�1 2 V i2;t�1, put an edge betweenait and vi2;t�1 randomly and independently, with probability 1=n�. Let Ri denote thecollection of random edges resulting among the two sets V i2;t�1 and Ait.See Figure 1 for an example in the case k = 5. We note that for each vertex a 2 A andgadget i, there is a unique vertex ait 2 Ait which is connected to the vertex a via a path whichgoes entirely through the matching edges. For this reason, we throughout the paper call ait amatched copy of a. Similarly, every vertex v2 2 V2 has a unique matched copy vi2;t�1 2 V i2;t�1in any gadget i.It is easy to verify that the constructed graph is bipartite.3.3 Cycles containing Ri edgesIn this section we move towards proving that there exist spanners with a number of edgesclose to the minimum possible which contain none of the edges of Ri. We are particularlyinterested in the cycles with lengths 2t+ 2 or less and containing edges of Ri, because thesecycles can help span the edges of Ri. In other words, given a short enough cycle containingan edge e 2 Ri, we can choose all the other edges in the cycle, except e and span e (in thesense that we now have an alternative path with a length of 2t+ 1 or less for e).9
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One point we should prove, for example, is that the edges of Ri cannot span themselvese�ciently. Unlike a bipartite clique, there is no e�cient way of choosing a small subset ofthe Ri edges so that these chosen edges help span \many" of the other unchosen Ri edges.We prove this simply by showing that the number of cycles containing only edges of Ri issmall. Similarly, we count the number of other \undesirable" cycles.It would follow that if the edges of Ri cannot span themselves, each edge of Ri shouldbe spanned using a path from Ait to V i2;t�1, which passes through A, V1 and V2. Denote byB the collection of all such paths. More speci�cally, a path P 2 B starts at a matched copyait 2 Ait of a vertex a 2 A. Then P goes to the sets Ait�1; Ait�2; : : : ; Ai1 via the matchingedges. P then goes to a, then to a vertex v1 2 G, and then to a neighbor (in G and �G)v2 2 V2 of v1. Finally, the path continues to the matched copy vi2;t�1 of v2, via the matchingedges. (Note that the path does not pass through h1 and h2). Note that the edge (ait; vi2;t�1)(if present) closes a cycle with length exactly 2t + 2 with P . Let Bc denote the collectionof such cycles. Call each path P 2 B for short (respectively, each cycle C 2 Bc) a B�path(respectively, a Bc�cycle.) In addition to the B�cycles, we show that the other cycles areeither too long and cannot play a part in a spanner, or, among the other short cycles, thereare only few such cycles and these cycles can have only a limited impact on the number ofedges in a sparse spanner.Let us �rst make some observations regarding short cycles containing edges of Ri in theconstruction. In addition to the Bc�cycles we have the following:1. First, one may try to construct a cycle which contains Ri edges, and remains in the\left side" of the construction. More speci�cally, this is a cycle which begins at a vertexvi2;t�1 2 V i2;t�1, continues to two matched copies ait and bit, of a; b 2 A, then goes inparallel via the matching edges to a and b, and closes at a mutual neighbor v1 2 V1 ofa and b.Note, however, that the length of the path leading each vertex in V i2;t�1 to V1 throughA, is t+2. Hence, any cycle containing two edges of Ri, two vertices of A, and a vertexof V1 has length 2t + 4. Such a cycle cannot serve as an alternative path for an edgein Ri.2. Secondly, consider a cycle containing edges from Ri and Rl, for l 6= i (i.e., via twodi�erent gadgets.) Such a cycle would contain one or two edges from Ri, and thesame number of edges from Rl. The minimum length of such a cycle is exactly 4t.For example, one can construct such a cycle in a parallel route using two di�erentmatchings, from Ri to V2 and then continue in parallel to Rl. Note, however, that11



4t > 2t+2. This follows since t > 1 (this is precisely the place where the constructionfails for k = 3 and t = 1).We now see that the only appropriate cycles (having a length bounded by 2t + 2) con-taining an edge of Ri are the following:(B) the Bc�cycles;(C) cycles containing only edges of Ri. Name the collection of such cycles (in all the gadgets)Cc and call such cycles Cc�cycles;(D) cycles containing edges of Ri and G, and none of the vertices of A. More speci�cally,one can choose a vertex v1 2 V1. Choose two neighbors v2; u2 of v1 in V2, move ina parallel route using the matching edges to the two matched copies vi2;t�1 of v2 andui2;t�1 of u2 in V i2;t�1, and �nally close the cycle using a mutual neighbor ait 2 Ait, ofvi2;t�1 and ui2;t�1. Name the collection of such cycles (in all the gadgets) Dc and callsuch cycles Dc�cycles.In the following lemmas we bound the (expected) size of Cc and Dc.We �rst deal with Cc. Call the graph induced by the Ri edges GRi.Lemma 3.1 The expected size of Cc is bounded by ~O(n1+�).Proof: Any cycle in Ri, with a length of j � 2t+2 or less includes j vertices of GRi, j=2 oneach side. In addition, any choice of subset of j=2 vertices in each side of GRi , for j � 2t+2,may lead to a cycle of the appropriate length. (We note that when choosing, one must takethe order of the vertices into account). The number of choices (counting the order) of j=2vertices in a given side is less than nj=2.The probability of a cycle with a length of j \surviving" the random choice (i.e., theprobability that all its edges are included by the random choice) is 1=nj��. Recall that, byde�nition, � = (2t+1)(1��). By de�ning an appropriate indicator variable for any candidatecycle, we �nd that the expected size of Cc is clearly bounded by:4 lnn � n� � 2t+2Xj=4 nj(1��) (3)The largest term in the sum (3) is with j = 2t + 2. The number of terms in the sum isless than 2 � t. Hence we get that the expected size of Cc is less than:4 lnn � 2 � t � n� � n(2t+2)(1��) = 4 lnn � 2 � t � n � n(2t+1)(1��)12



The required claim follows by the de�nition of �.Next we must bound the expected size of Dc. First, however, we need the following claimderived directly from the Cherno� Bound [C-52].For every two vertices vi2;t�1 and ui2;t�1 in V i2;t�1, let m(vi2;t�1; ui2;t�1) be the number ofmutual neighbors vi2;t�1 and ui2;t�1 have in Ait. Letm denote the maximum ofm(vi2;t�1; ui2;t�1),taken over all values of i, and pairs of vertices in V i2;t�1. We bound m as follows:Claim 3.2 For a large enough n, with probability of at least 1� 1=n2, m � 2 � n1�2�.Proof: For every two vertices vi2;t�1 and ui2;t�1, let Neig(vi2;t�1; ui2;t�1) be the random variablewhich counts the number of mutual neighbors in Ait.The random variable Neig(vi2;t�1; ui2;t�1) has a binomial distribution with n trials, and aprobability of success 1=n2�. This is because of the following reasons.There are n candidate mutual neighbors of vi2;t�1 and ui2;t�1 in Ait. Let Nait denote theevent that ait is a mutual neighbor of the two vertices vi2;t�1 and ui2;t�1. For each suchcandidate ait 2 Ait, the two corresponding edges (which belong to Ri with probability 1=n�each, independently of each other), should appear in Ri. Moreover, the pairs of edgescorresponding to di�erent ait and bit are disjoint. This tells us that the two events Nait andNbit are independent.In summary, the expectation ofNeig(vi2;t�1; ui2;t�1), IE(Neig(vi2;t�1; ui2;t�1)), is n1�2�. Thusaccording to Corollary 2.5, for every n large enough, IP(Neig(vi2;t�1; ui2;t�1) > 2 � n1�2�) <1=n5.It follows that m is bounded by 2 � n1�2� with a probability of at least 1� 1=n2. This isbecause the number of pairs vi2;t�1 and ui2;t�1 in any gadget is less than n3, as the number ofgadgets is o(n) and there are n2 pairs of vertices (vi2;t�1; ui2;t�1) in each gadget.We now bound the size of Dc. Using the above description (see (D)), we count the numberof these cycles as follows: Choose a vertex v1 in V1 (n options). Select two neighbors v2 andu2 of v1. Since the maximum degree in G is bounded by n1��1 , the number of possible v2 andu2 pairs is bounded by n2�2��1 . Choose a gadget ( ~O(n�) options) and go using the matchingedges to the two matched copies vi2;t�1 and ui2;t�1 of v2 and u2. Select a mutual neighbor aitof vi2;t�1 and ui2;t�1. According to the above corollary, there is a high probability that thenumber of such ait neighbors is bounded by O(n1�2�).Hence, with high probability, the size of Dc is bounded byn � n2�2��1 ~O(n�)O(n1�2�) = ~O(n4���2�1) (4)13



= o(n1+�1)The last inequality holds since 1� �=3 < �1 by de�nition.We summarize (using the fact that by de�nition n� = o(n�1)).Corollary 3.3 The expected size of Cc [ Dc is bounded by o(n1+�1):3.4 The lower boundIn this section we prove the lower bound using Corollary 3.3. First we need the followingtechnical lemma, which states that all the vertices of A are connected to all the vertices ofV2 via a path which goes entirely through the matching edges and Ri edges. For the sequel,call this type of path a \proper" path.Lemma 3.4 With probability at least 1� 1=n2 for every pair of vertices a 2 A and v2 2 V2,there exists a gadget i such that the edge (ait; vi2;t�1) was included by the random choice. Hencewith probability of at least 1� 1=n2, each (a; v2) pair is connected via a proper path.Proof: Consider any matched copy ait of a and a matched copy vi2;t�1 of v2. An edge ispresent between these two vertices with probability 1=n�. Therefore the probability that forany i, all these edges are missing, is bounded by:(1� 1n� )4�lnn�n� � 1n4 (5)Thus, for a given pair a and v2, the probability that a and v2 are not connected by aproper path is less than 1n4 . By summing up these probabilities, the probability that any ofthese two vertices will not be connected by a proper path is bounded by 1=n2 as required.This follows since there are n2 pairs of vertices (a; v2) with a 2 A, v2 2 V2.In the sequel we assume that the total size of Cc and Dc is indeed bounded by o(n1+�1)as stated in Corollary 3.3, and that the implied part in Lemma 3.4 holds �rm. On the onehand, the required properties can be guaranteed with �xed probability using the Markovinequality (cf., [MR-95]). This inequality is needed primarily in order to bound the size ofCc. Thus, we may �nd that, say, with a probability of at least 9=10, the quantity jCcj+ jDcjis bounded by o(n1+�1), while Lemma 3.4 holds as well. In turn, one can derandomize theconstruction using the method of conditional expectation [S-87] in time nO(k). In otherwords, it is possible to deterministically construct a structure with the desired properties inpolynomial time, for �xed k. 14



Using these assumptions, we can state our two main claims. Let s� be the size of anoptimum cover in G. Note that since G is an instance of the (1 � �1)�set-cover problem,s� � n�1 .Lemma 3.5 For a large enough n, the instance �G of the (2t+ 1)�spanner problem admitsa (2t+ 1)�spanner with no more than 2 � s� � n edges.Proof: Introduce the edges touching h1, h2 and the edges of G into the spanner. The numberof edges added so far is O(n2��1). We have thus spanned the edges of the �xed part of theconstruction. The edges touching h1 and h2 and the edges of G are spanned with stretchfactor 1, while the edges connecting A and V1 are spanned with stretch factor 3.Bring all the matching edges into the spanner. The number of edges added here is~O(t � n1+�) = ~O(n1+�) (the last equality is valid for �xed t or even for t = O(log n) as in ourcase).It only remains to span the edges of Ri. Choose a cover S� � V1 of V2 of size s�. Connectall the vertices of A to all the vertices of S�. It is easy to check that all the edges of Ri arespanned by an alternative path P 2 B with length exactly 2t + 1. Note that the number ofedges in this spanner is s� � n + ~O(n1+�) + O(n2��1). Now, since n� = o(n�1), �1 > 1=2 ands� � n�1 , the claim follows for large enough n.Lemma 3.6 For all l > 0 and large enough n, given a (2t+1)�spanner H(V;E 0) in �G withno more than l � n edges, there exists a (polynomially constructible) cover S of V2 of size 2lor less.Proof: We show how to modify H so that all the edges of Ri are spanned by a B�path. Inthis modi�cation, we somewhat increase the number of edges in H; however we prove thatthe increase is slight. Once all the edges of Ri are spanned by a B�path, we show how todeduce a small cover of V2 from this modi�ed construction.Starting with H, change to a new (2t+1)�spanner H 0 as follows: First, add all the edgestouching h1 and all the edges touching h2 (if they are not already there) to H. Similarly,add all the matching edges and the edges of G.Now consider the edges in Ri\E 0, i.e., the edges of Ri, which are in the spanner. Removeeach such edge (ait; vi2;t�1) joining a matched copy ait of a to a matched copy vi2;t�1 of v2. Inthe present situation, several of the Ri edges may be unspanned. Those are edges in Riwhich belong to a Cc�cycle or a Dc�cycle. Recall, however, that we have already shownthat there are only few such cycles. This immediately implies that only few of the edges inRi are not spanned now. Add an arbitrary alternative B�path P 2 B for each such edge.15



Note that such a path exists since we assume that V1 covers V2. The resulting graph H 0 isstill a legal (2t+ 1)�spanner.Note that (aside from the matching edges) for every cycle in Cc [Dc we may have addedtwo additional edges to H 0, one joining a vertex a 2 A and a vertex v1 2 V1, and the otherjoining the vertex v1 to a vertex v2 2 V2. These are the two relevant edges from the B�pathP . Let num denote the number of edges in the new resulting spanner H 0. According toCorollary 3.3, num is bounded above bynum � l � n + ~�(t � n1+�) + o(n1+�1) +O(n2��1): (6)Note that the only way now to span the Ri edges is by using a B�path.Recall that, according to Lemma 3.4, for every vertex a 2 A and v2 2 V2 there arematched copies vi2;t�1 and ait of v2 and a, which are neighbors in Ri. Since the edge e =(vi2;t�1; ait) is missing from H 0, we must span this edge via a B�path P . It follows that a isconnected to a neighbor v1 2 V1 of v2. In other words, the set Sa of neighbors of a in V1 inthe spanner H 0 is a cover of V2 in G.On the one hand, note that the number of edges num in H 0 is bounded below bynum � Xa2A jSaj � n � s� � n1+�1 : (7)which implies that num � n1+�1 . Now, since � < �1 and �1 > 1=2, we combine Equations 6and 7 to deduce that n1+�1 � l � n+ o(n1+�1): (8)From Equation 8, we deduce that 2l � n�1 for a large enough n.On the other hand: num � Xa2A jSaj: (9)By averaging, we �nd that there is a cover Sa of the size num=n or less. Therefore the sizeof this set Sa is bounded by l+ ~O(t � n�) + o(n�1) +O(n1��1) � 2l (the last inequality, again,follows for large enough n since l � n�1=2).Thus we may choose Sa as the required cover.The main theorem is now derived easily. For this theorem let c be a constant such thatit is NP�hard to approximate set-cover within ratio c lnn.16



Theorem 3.7 The k�spanner problem for k � 5 cannot be approximated within ratioc(1� �1)8 � lnnunless P = NP .Proof: Again, it is only necessary to prove this result for odd values, k = 2t+1; t � 2; of kand n large enough. Assume an algorithm A that has the stated ratio. Let G be an instanceof the n(1��1)�DBSC as described above. Let s� be the size of the minimum cover of V2 inG. Construct an instance �G of the (2t+ 1)-spanner as described. According to Lemma 3.5,the graph �G admits a spanner with 2 �s� �n edges. The number of vertices, �n, in �G is ~�(n1+�).Thus, ln �n < 2 lnn for n large enough. The theorem therefore assumes that the algorithm Awould produce a spanner of size less than (c(1��1)=8)�2�lnn�2�s� �n = (c(1��1)=2)�lnn�s� �n.Let l = (c(1� �1)=2) � lnn � s�. According to Lemma 3.6, one derives a cover with a sizeat most c(1 � �1) � lnn � s� from this construction (in polynomial time). This contradictsLemma 2.3.4 The case k = 3 and k = 4, and the case k = 24.1 The case k = 3 and k = 4We begin with the case k = 3 and k = 4. Again we have a �xed part and a gadget part inthe construction. Let �, � and �1 be de�ned by Inequalities (1) and (2), with t = 1. Here weneed the additional assumption that (1+�)=2 < �1 < 1. Again, begin with a n(1��1)�BDSCinstance, G(V1; V2; E). The �xed part has a copy of V1 and the set A of n vertices. Thesetwo sets are cliqued. As before, we introduce two vertices h1 and h2 that take care of thebipartite clique edges.Let q = ~O(n�). We have now q copies of V2, V 12 ; : : : ; V q2 , i.e., V2 belongs to the gadgetpart in this construction. Form q copies of G by appropriately connecting V1 and V i2 for eachi. In addition, add q sets Ai of size n. Each set Ai is matched with A. Finally, draw anedge between each vertex ai 2 Ai and vs2 2 V s2 ; 1 � s � q, with probability 1=n�.Again, there is a high probability that for each v2 2 V2 and a 2 A there is a copy Ai ofA and a copy V j2 of V2, such that the two vertices vj2 and ai corresponding to v2 and a sharean edge. In a proof similar to the one in Lemma 3.6 it is possible to show that there exist aspanner close to the optimal, containing no Ri�edges. Hence, the hardness of approximation17



follows here in a way similar to the case of k � 5. The only di�erence is that we add ~O(n�)copies of G into the spanner; i.e., we add n2��1+� edges to the spanner. However, we onlyhave to verify that 2� �1 + � < 1 + �1, which holds by the additional assumption.Corollary 4.1 For any �xed k, k � 3, there exists a constant c such that the k�spannerproblem restricted to bipartite graphs is NP�hard to approximate within ratio c logn.4.2 The case k = 2In order to prove a hardness result in the case k = 2, we simply take the �xed part of theconstruction for k � 5 without the vertex h2. We also connect h1 to all the vertices in V1(note that h1 is now connected to all the vertices of A[V1.) Finally, we clique A and V2. Asbefore, a sparse spanner is derived by choosing the edges touching h1, the edges of G and theedges connecting A to a minimum cover S� of V2. Furthermore, the construction of a smallcover given a sparse spanner is obtained by inspecting the way the edges connecting A andV2 are spanned. Therefore, a hardness result similar to the above follows easily, except thatthe graph is only 3�partite, i.e., 3�colorable (in a bipartite graph the only 2�spanner forthe graph is the graph itself, hence the 2�spanner problem is trivial on bipartite graphs).Combined with the result of [KP-92] we arrive at:Corollary 4.2 Unless P = NP , the best polynomial approximation algorithm for the 2�spannerproblem has a ratio of �(logn) even when restricted to 3�partite graphs.5 The weighted caseIn this section we deal with the following weighted version of the spanner problem. We aregiven a graph G with a weight function w(e) on the edges. We assume the length of each edgeto be 1. That is, once again, in every k�spanner, a missing edge should be replaced by acycle containing k edges or less. Here, however, we measure the quality of the spanner by itsweight, namely the sum of the weights of its edges. We look for a k�spanner with minimumweight. In this section we prove an essential di�erence between the approximability of casesk = 2, and k � 5, i.e., we prove that for k = 2, this version of the problem admits anO(logn) ratio approximation. However, for every k � 5, the problem has no 2log1�� n� ratioapproximation, unless NP � DTIME(npolylogn). This, for example, indicates that it isunlikely that there would be any polylogarithmic ratio approximation for the edge-weightedk�spanner problem, for k � 5. 18



5.1 The case k = 2In the weighted 2�spanner problem, one looks for a minimum weight 2�spanner, namely,a low weight subgraph G0 where every missing edge closes a triangle with two edges thatdo belong to G0. We �nd out that a method similar to the one employed in [KP-92] forapproximating the unweighted case is suitable for approximating even this more generalcase.We sketch the variant of the method of [KP-92] required here.We say that a vertex v 2�helps an edge e = (w; z) in G0 if the two edges (v; w) and (v; z)are included in G0, i.e., in G0, there is an alternative path of length 2 for e that goes throughv. The idea is to �nd a vertex v that 2�helps many edges of E, using low weight. Considereach vertex v 2 G. Let N(v;G) be the graph induced in G by the neighbors N(v) of v. Forevery neighbor z of v, put weight w(e) on z in N(v;G), where e = (z; v). For any subsetof the vertices V 0 � N(v), let e(V 0) denote the number of edges inside V 0, and let wv(V 0)denote the sum of weights of the vertices of V 0, in N(v;G). We look for a vertex v and asubset V 0 � N(v) that achieves the following minimum:minv ( minV 0�N(v)(wv(V 0)e(V 0) )) :It is important to note that the pair v; V 0 achieving this minimum can be found inpolynomial time using 
ow techniques (cf. [GGT-89]). Given v and V 0, one adds the edgesconnecting v and V 0 to the spanner. Note that in this way we 2�help (or span) all the edgesinternal to V 0, using low weight. This is done in iterations until the edges are exhausted.It follows from a proof similar to that in [KP-92] that this greedy algorithm is anO(log(jV j))�ratio approximation algorithm for the edge-weighted 2�spanner problem. De-tails are therefore omitted.Theorem 5.1 The edge-weighted 2�spanner problem, in the case `(e) = 1, for every edgee, admits an O(log(jV j))�ratio approximation algorithm.5.2 The case k � 5In this subsection we consider the edge-weighted k�spanner problem, for k � 5, in the specialcase where `(e) = 1 for every edge e. We essentially prove hardness by giving a reductionfrom a one-round two-prover, interactive proof system. For simplicity, however, we abstract19



away the relation to the interactive proof and describe the problem from which we reducein the following simpler manner. There are two versions of the problem, a maximizationversion and a minimization version.We are given a bipartite graph G(V1; V2; E). The sets V1 and V2 are split into a disjointunion of k sets: V1 = Ski=1Ai and V2 =kj=1 SBj. The sets Ai and Bj all have size N .The bipartite graph and the partition of V1 and V2 induce a super-graphH in the followingway: The vertices in H are the sets Ai and Bj. Two sets Ai and Bj are connected by a(super) edge in H i� there exist ai 2 Ai and bj 2 Bj which are adjacent in G. For ourpurposes, it is convenient (and possible) to assume that graph H is regular. Say that everyvertex in H has degree d, and hence, the number of super-edges is h = k � d.In the maximization version, which we call Max-rep, we must select a single \representa-tive" vertex ai 2 Ai from each subset Ai, and a single \representative" vertex bj 2 Bj fromeach Bj. We say that a super-edge (Ai; Bj) is covered if the two corresponding representa-tives are neighbors in G, i.e., (ai; bj) 2 E. The goal is to select a single representative fromeach set and maximize the number of super-edges covered.Let us now recall the satis�ability (SAT ) problem. A CNF boolean formula I is given,and the question is whether there is an assignment satisfying all the clauses. The followingresult follows from [FL-92]. It can also be deduced from [R-95].Theorem 5.2 Let I be an instance of SAT . For any 0 < � < 1, there exists a reduction ofeach instance of the satis�ability problem, to an instance G of Max-rep of size n, such that ifI is satis�able, there is a set of unique representatives which cover all h = k � d super-edges,and if the formula is not satis�able, in the best choice of representatives, it is possible tocover no more than h=2log1�� n of the super-edges.In the above reduction, n is polylogarithmic in the size of the SAT formula. The followingeasily follows from Theorem 5.2.Theorem 5.3 Unless NP � DTIME(npolylogn), Max-rep admits no 2log1�� n�ratio approx-imation, for any � > 0.We need a slight minimization variant of Max-rep, which we call Min-rep. In this casethe goal is to choose a minimum size subset C � V1[V2. Unlike the maximization version ofthe problem, in the minimization version of the problem, one may choose to include manyvertices of each set Ai and Bj in C . In Min-rep one must cover every super-edge, i.e., foreach super-edge (Ai; Bj) there is a pair ai 2 Ai and bj 2 Bj, both belonging to C, such that(ai; bj) 2 E. 20



A limitation on the approximability of Min-rep, similar to that of Max-rep, follows easilyfrom Theorem 5.2. The reduction here is rather standard. It is also implicit in [LY-93].However, for the sake of completeness we describe the reduction.The hardness of Min-rep follows from the following observation. Say that you have asolution C for Min-rep with t representatives. On average, there are t=2k representativesin each Ai and Bj. Therefore, there are no more than k=2 sets Ai or Bj containing morethan 2t=k representatives of C. In removing these sets from H, one deletes no more thanh=2 = d � k=2 super-edges. Let H0 denote the resulting super-graph. Thus, at least h=2super-edges are internal to H0.Draw a single representative uniformly at random for each Ai (resp., Bj) in H0 . Theexpected number of super-edges covered is (at least) h � k2=8t2. The randomization in thechoice can be removed using the method of conditional expectation.Now, assume there exists an l�ratio approximation algorithm for Min-rep. Consider thereduction from I to G described in Theorem 5.2. If I is a \yes" instance of SAT, then thereexists in G a proper system of representatives C for Min-rep of size 2k (a single vertex canbe chosen from each set). The assumed algorithm will produce a solution for Min-rep of asize no larger than 2 � k � l.On the other hand, it follows from the above discussion that if I is a \no" instance forSAT, the solution for Min-rep produced by any algorithm is of size at leastt � k � 21=2�log1�� n2p2 ;since otherwise, we get a solution to Max-rep covering hk2=(8t2) > h=2log1�� n super-edges.Therefore,Theorem 5.4 Unless NP � DTIME(npolylogn), Min-rep admits no 2log1�� n�ratio approx-imation algorithm, for any � > 0.We now give a reduction from Min-rep to the edge-weighted 5�spanner problem. Thereduction for k > 5 is similar. Let G = (V;E) be an instance of Min-rep with each Ai; Bjof size N . We build an instance �G of the edge-weighted 5-spanner as follows: Add G into�G. Give the edges of G weight 0. Match each set Ai to a new set Si and give these edgesweight 1. Match each set Bj to a new set Tj. These edges are also given weight 1. Then,introduce a new vertex vi (resp., a new vertex ui) that is adjacent with edges of weight 0, toall vertices Ai (resp., all the vertices of Si). The vertices vi and ui are joined by an edge ofweight 0. Finally, for each Bj we introduce a vertex zj (resp., wj) joined to all the verticesof Bj (resp., of Tj). Again, zj and wj are joined by an edge, and all the edges touching wj21



and zj have weight 0.Now, for every super-edge (Ai; Bj) clique the set Si to a new set Xij of size N , and cliqueeach set Tj to a new set Yij of size N with edges of weight 0. Finally, clique each pair Xijand Yij with edges of weight (N � k)2, each.It easily follows that no edges connectingXij and Yij are to be included in a good spanner.Hence, the only way to span an edge connecting Xij and Yij is via a path of length 5 thatgoes through a vertex ai 2 Ai and a vertex bj 2 Bj. Given a sparse spanner, vertices aiand bj which participate in such a path can be chosen into C. In this way one gets a setof representatives C which is a solution for Min-rep. It is clear that C covers all super-edges. In addition, the weight of the spanner is exactly jCj, since we have extra weight of 1corresponding to the matching edge for each vertex in C.In the other direction, suppose we are given a small subset C of representatives whichcovers all the super-edges. We get a sparse spanner as follows: let (Ai; Bj) be a super-edge. Choose a pair ai 2 Ai \ C, bj 2 Bj \ C, (ai; bj) 2 E. Add an edge from ai to thecorresponding vertex si 2 Si. Add all the edges from si to Xij. Add an edge from bj to thecorresponding vertex tj 2 Tj. Add all the edges from tj to Yij. Finally, add all the edgestouching vi; ui; zj; wj. Clearly, this establishes a 5�spanner of weight jCj.Since the constructed graph is bipartite, the following corollary easily follows from The-orem 5.4.Corollary 5.5 Unless NP � DTIME(npolylogn), the edge-weighted k�spanner problem, fork � 5, admits no 2log1�� n�ratio approximation, even when restricted to bipartite graphs.In conclusion, the main open question is whether a similar \gap" in the approximabilityof k = 2, and k � 5 is valid in the unweighted case as well. The goal is to either proveevidence for such a gap, or give logarithmic ratio approximation algorithms for �xed valuesof k. The cases k = 3 and k = 4 also deserve attention.AcknowledgmentThe author thanks Uri Feige for many helpful discussions.References[ABP-92] B. Awerbuch and A. Baratz and D. Peleg, E�cient Broadcast and Light-Weight22
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