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I. INTRODUCTION

Random linear network coding is a multicast communica-
tion scheme in which all participating nodes send out coded
packets formed from random linear combinations of packets
received so far. This scheme is capacity-achieving for single
sessions over lossy wireline or wireless packet networks [1],
[2], [3], [4]. Thus, from the point of view of efficiently utilizing
transmissions, random linear network coding is an attractive
strategy. However, it is not presently attractive from the point
of view of efficiently utilizing computational resources.

To decode a k-packet-long message, a decoder needs to
invert a k×k dense matrix, which, using Gaussian elimination,
requires O(k3) operations (or O(k2) operations per input
symbol). Once the matrix inverse is computed, applying the
inverse to the received coded packets to recover the message
requires O(k2) operations (or O(k) operations per input
symbol). Although the former computation is more costly than
the latter as a function of k, it is usually the latter cost that
dominates, since the latter computation depends on the length
of the packets (which is usually on the order of kilobytes),
while the former does not. This dominant cost can make the
computational resources required for random linear network
coding prohibitive [5].

But a random linear code is a somewhat naı̈ve code. By
picking the code randomly, we ensure that the code is efficient
at communicating information but, at the same time, by
employing little design in the code, we obtain a code that
is computationally inefficient. Thus, a natural code design
question arises: can we design a network code that preserves
the communication efficiency of a random linear code and
achieves better computational efficiency?

In this paper, we give an affirmative answer to this question.
The code that we present as our answer achieves significantly
better computational efficiency and is based primarily on
techniques that are now quite standard in the literature on
erasure codes. That said, our application of these techniques to
network coding requires some novel ideas. First, we partition
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the messages into “chunks” (smaller sub-messages of the
original message) and introduce a simple scheme for deciding
which chunks to transmit at any point in time. (The use
of chunks allows us to achieve sub-quadratic computational
costs.) Second, we introduce a precode, which allows the
message to be recovered when only a subset of the full set
of chunks have been successfully decoded, thereby achieving
linear computational costs. For simplicity the exposition in
this paper focuses on the unicast communication case (with a
single source and a single sink), however it should be readily
clear that our arguments immediately extend to the multicast
communication case (with a single source and multiple sinks).

A. Comparison to Related Work

Chunking schemes have been previously applied in the
context of network coding. For example, Chou et al. [6] divide
the message into “generations” and code each generation sep-
arately using random linear network codes. However, their use
of generations was not motivated by computational efficiency,
but rather as a means of handling the lack of synchronization in
practical networks. An important issue that one must address in
any chunking scheme is: when a node generates a symbol for
transmission, which chunk’s data should be used to generate
the symbol? Chou et al. propose two designs addressing this
issue. In the first design, receiver(s) provide feedback to the
sender about which generations have already been completely
decoded. The sender can therefore stop transmitting symbols
for completed generations and thus nodes transmit symbols
for generations in a sequential order. In their second design,
nodes simply transmit symbols for generations in a round-
robin order.

Our design address the aforementioned issue differently:
each node chooses a chunk at random and produces a coding
symbol for that chunk. Our design has several benefits: first,
feedback from receivers is not required; and second, good
coding performance is ensured under any pattern of erasures
by the channel (even an adversarially chosen pattern). The
round-robin design does not have this latter property, since
erasures could exhibit some regular pattern. Two drawbacks
of our design are that the internal network nodes require
storage proportional to the size of the original message, and
that streaming media is not supported. However, our design
is very applicable to the common scenario of peer-to-peer file
distribution [7], [8].



Erasure code Overhead Encoding cost Decoding cost
LT O(

√
k ln2 k) O(ln k) O(ln k)

Raptor λk O(ln 1/λ) O(ln 1/λ)

Network code Overhead Encoding cost Decoding cost
Chunked w/o precode O(k/ ln1/4 k) O(ln2 k) O(ln2 k)
Chunked w/ precode λk O(λ−4 ln 1/λ) O(λ−4 ln 1/λ)

Dense O(log k) O(k) O(k)

TABLE I
COMPARISON OF VARIOUS ERASURE CODES AND NETWORK CODES WITH ERROR PROBABILITY poly(1/k).

Precodes have been intensively studied in the context of
efficient erasure codes, but to the best of our knowledge,
they have not been used in the context of network codes.
Precodes originate from work on Raptor codes [9] and Online
codes [10], which we collectively refer to as Fountain codes.
These codes are designed to operate over a single erasure
channel and therefore do not function well in a general
network (they incur loss of rate, additional delay, or both). That
said, one would expect Fountain codes to be more efficient
than network codes on a single erasure channel because this
scenario is a very restricted case of a lossy network. These
differences notwithstanding, it is instructive to compare our
codes (Chunked codes with and without a precode) to efficient
erasure codes (Fountain codes and LT codes [11], which are
Fountain codes without a precode) and random linear network
codes, which we call Dense codes.

In Table I, we show the overhead, encoding cost, and
decoding cost necessary to achieve error probability that varies
at most inversely polynomial in k (i.e., a probability of unsuc-
cessful decoding of at most 1/kc for some positive c) for these
various codes. Overhead, in the context of an erasure code is
defined as the number of received symbols, n, minus k; in the
context of a network code, the definition is similar, but more
complicated—we defer the precise definition of the overhead
of a network code to Section II. Encoding cost is defined as
the number of packet operations performed by a coding node
divided by k. Decoding cost is defined as the number of packet
operations performed by a decoding node divided by k (this
cost excludes, for example, the cost of calculating an inverse,
since these are bit or field operations rather than packet
operations). We see that Chunked codes, whether with or
without a precode, achieve decreased encoding and decoding
costs compared to Dense codes. These improved encoding and
decoding costs come at the cost of increased overhead, as one
would expect. Moreover, we see that Chunked codes achieve
similar performance to LT codes and Raptor codes, though, as
expected, the erasure codes are more efficient. Note that, for
codes with a precode (Raptor codes and Chunked codes with
a precode), there is a parameter λ > 0 that allows for a range
of performances to be achieved.

B. Network Model

We conduct our analysis of Chunked codes and Dense
codes under the network model presented in Section II. This
model is based on the concept of a time-expanded graph or

trellis [3], [8]. We use instead the term adversarial schedule.
An adversarial schedule is a deterministic, graph-theoretic
description of a specific transmission instance, whereby only
the successfully transmitted packets are specified. Such an
instance may be chosen by an adversary, hence the term. Our
adversarial model is stronger than the probabilistic models
used in [1], [2], [3], [4]. As in previous work, our model
allows for a convenient graph-theoretic upper-bound on the
capacity that any coding scheme can achieve.

The Chunked and Dense coding schemes both asymp-
totically achieve this upper-bound. Moreover, both schemes
are intrinsically rateless (a.k.a., adaptive), and allow network
nodes to construct and transmit new coded symbols before
they have completely received and decoded the entire k-
packet message. We believe it is interesting that the Chunked
codes can achieve these useful properties while also greatly
improving the computational efficiency of the Dense codes.

The physical networks considered in this paper are wireline
networks, not wireless; this restriction is for simplicity and
clarity of exposition. We expect that our network model and
results can be extended to wireless networks. Thus, we expect
that, in wireless networks, Chunked codes will solve the
problem of determining what data to place in packets in a
rate-optimal way for a single session (as Dense codes do [4]).
Scheduling, routing, and subgraph selection (see, for example,
[12]) are important problems that are outside the scope of the
coding problem we consider.

C. Organization

Under the adversarial network model, we conduct an analy-
sis of Dense codes in Section III, then an analysis of Chunked
codes in Section IV. Our analysis of Dense codes adds to the
existing knowledge of such codes developed in [1], [2], [3],
[4]. In particular, we believe that our analysis is the first to
quantify the overhead associated with a Dense network code.
Moreover, this analysis of Dense codes is necessary for our
analysis of Chunked codes. In short, Chunked codes operate
by dividing the message into chunks (sub-messages), each
of which is sent by a Dense code. At each time step, each
node randomly chooses a chunk to operate on. The number
of chunks to use must be selected with care, since too few
chunks implies little gain in encoding or decoding cost, and
too many chunks leads to “the curse of the Coupon Collector”,
where a decoder may need to wait a long time for the last few
chunks it needs. Chunked coding is described in more detail



in Section IV. In Section V, we describe how precoding may
be used with a Chunked code to achieve linear computational
costs (in the input message size).

II. FORMAL NETWORK MODEL

Let V be the set of nodes participating in a packet network,
with s ∈ V a distinguished source and t ∈ V a distinguished
sink. Unlike typical formalizations, we will not explicitly
model network channels as edges. Instead, our model will
describe packets which were successfully transmitted between
two network nodes. A packet that was transmitted from
node v1 at time t1 and received by node v2 at time t2 is
modeled as the 4-tuple (v1, t1, v2, t2). We do not assume
that transmissions are generated according to any probabilistic
process. Instead, we assume that they may be chosen by an
“adversary” which seeks to minimize the rate achieved by
the coding scheme under consideration. Therefore, a set Ψ

of transmissions that occur in a particular network scenario is
called an adversarial schedule.

Transmissions have a natural graphical interpretation. De-
fine a graph GT (Ψ) whose vertex set is a subset of V ×
(R ∪ {∞}). Each transmission induces two end-vertices and
a single edge (called a traffic edge) in the graph. There is
no loss of generality in assuming that traffic edges have unit
capacity. To complete the description of GT (Ψ), we add an
additional source vertex (s, 0) and sink vertex (t,∞). Also,
for any two vertices (w, t) and (w, t′) with t < t′, we add
an infinite-capacity edge between these vertices. The graph
GT (Ψ) is called a time-diagram, or continuous-time trellis.

There is a natural upper bound on the number of distinct
packets that can be transmitted from s to t under an adversarial
schedule Ψ. This bound is given by the capacity of the
minimum cut separating (s, 0) and (t,∞) in GT (Ψ). This
quantity is called the capacity of the schedule. The capacity of
a schedule Ψ represents the maximum number of packets that
we can hope to communicate across it. Therefore, if a network
code communicates k packets over a schedule of capacity n,
then its overhead is n− k. If the schedule Ψ were known in
advance, it would be trivial to construct a coding scheme with
zero overhead. The issue is that Ψ is of course not known in
advance, and therefore one wishes to achieve low overhead
via an efficient coding scheme.

Given an adversarial schedule, construct a maximum car-
dinality collection of paths between (s, 0) and (t,∞). By
the max-flow min-cut theorem, the number of such paths
is precisely the capacity n. These paths are grouped into
equivalence classes based on whether they traverse the same
sequence of network nodes. An equivalence class of paths is
called a flow path. For a flow path ξ, its capacity, denoted
c(ξ), is the number of paths in GT that are associated with ξ.
Thus a flow path ξ can be viewed as transmitting c(ξ) packets
from s to t. Let F be our collection of flow paths, and note
that

∑
ξ∈F c(ξ) equals the capacity n of Ψ.

III. DENSE CODE ANALYSIS

In this section we give a tight analysis of the performance
of random linear codes under adversarial schedules. Here, we
assume that each packet transmitted by a node is a random
linear combination of all previously received packets, i.e., the
linear combination is dense. The results in this section will be
used in the following section to obtain more computationally
efficient codes. The analysis proceeds as follows.

A. Preliminaries

The source node is given an input message consisting of
k symbols. The symbols are drawn from a vector space over
F2, i.e., symbols are strings of bits. Each symbol transmitted
by any node in the network will be some linear combination
of the input message symbols. The coefficients of this linear
combination are called the payload vector associated with the
transmission. Under our coding scheme, the payload vectors
are random variables.

Suppose that we are given a schedule Ψ with capacity n.
First, we construct a collection F of flow paths, as described
above. Consider a particular flow path ξ with capacity c(ξ).
Suppose that the nodes on ξ are s = v0, v1, . . . , v`(ξ) = t,
where `(ξ) denotes the length of ξ. For 0 ≤ i < `(ξ), define
a matrix Qi whose columns are the c(ξ) payload vectors
corresponding to the transmissions (on flow paths) between
vertex vi and vi+1. So the size of Qi is k × c(ξ).

Our subsequent analysis measures the amount of informa-
tion transmitted on an edge of ξ by the “randomness” of the
corresponding matrix Qi. The following definitions formalize
this idea. Let M be an r × n matrix whose entries are each
Bernoulli random variables.

Definition 3.1: A set of columns of M are called dense if
their entries are uniform and i.i.d. The density of M , denoted
D(M), is the maximum value d such that M contains d dense
columns. If D(M) = n then we say that the matrix M is
dense.

Definition 3.2: For any α ∈ N, we say that M contains a
α-triangle if there is a permutation π on the rows such that
from row π(i) we may choose at least α − i + 1 entries that
are uniform, and such that all chosen variables are mutually
independent. The triangular-density of M , denoted T (M), is
defined to be the maximum value of α such that M contains
a α-triangle.

Clearly 0 ≤ D(M) ≤ T (M) ≤ n. Our definitions
of density are motivated by the following lemma. The key
point of the lemma is that the probability of low rank is
exponentially decreasing in both (α− r) and γ.

Lemma 3.3: Let M be as above, and suppose that T (M) =
α, where α ≥ r. Then, for any γ ∈ N, we have
Pr[ rank(M) < r − γ ] ≤ (r − γ)2−(α−r+γ+1).

Proof. By assumption, M contains an α-triangle; let π be
the corresponding permutation. Let M ′ be M restricted to the
first r − γ rows under π. Clearly T (M ′) ≥ α. Consider the
event that M ′ does not have full row-rank. This is precisely
the event that there exists a 0-1 vector u of length r− γ with
uTM ′ = 0. Consider a vector u whose first entry with value 1



is the ith entry (all previous entries are 0). There are 2r−γ−i

such vectors. By the definition of an α-triangle, at least α−i+1
of the values in row i are uniform and i.i.d. Therefore at least
α − i + 1 entries of the vector uTM ′ are uniform and i.i.d.
All of these entries are 0 with probability at most 2−(α−i+1).
Taking a union bound over all vectors u, the probability that
uTM ′ is 0 for any vector u is at most (r − γ)2−(α−r+γ+1).
�

The following corollary (while not a part of our formal
arguments) intuitively justifies our definition of density as a
measure of information.

Corollary 3.4: Let M be as above and assume that
T (M) = α, where α ≥ r. Let x be a 0-1 vector with
uniform and i.i.d. entries. Then, for any γ ∈ N, we have
H(Mx |M) ≥ (r − γ) ·

(
1− (r − γ) · 2−(α−r+γ+1)

)
.

Lemma 3.3 is similar in spirit to the following well-known
result. (See, e.g., Shokrollahi [9, Proposition 2].)

Lemma 3.5: Let M be as above, and assume that D(M) =
n ≥ r. Then M fails to have full row-rank with probability at
most 2−(n−r).

The following lemma is also useful. Its proof is straightfor-
ward and hence omitted.

Lemma 3.6: Let M be as above and suppose that M is
dense, i.e., D(M) = n. Let R be a matrix with n rows and
rank(R) ≥ s. Then D(MR) ≥ s.

B. Proof Outline

We wish to analyze the overhead of Dense coding, i.e., the
number of packets transmitted from s to t that suffice to deliver
the message. Our approach is to consider each flow path ξ in
isolation1, and analyze the amount of information transmitted
along the path. To do so, we consider the sequence of matrices
Q1, . . . , Q`(ξ) and analyze their density. The definition of our
coding scheme immediately implies that D(Q1) = c(ξ). Next,
we argue that the density loss at each vertex D(Qi)−D(Qi+1)
is small, and hence D(Q`(ξ)−1) is large. If D(Q`(ξ)−1) is
just slightly larger than c(ξ) for all paths ξ (and hence∑

ξ∈F D(Ql(ξ)−1) is slightly larger than the input message
size), then Lemma 3.5 shows that with good probability the
sink can decode the message by solving a system of equations.

C. Density loss is small

First we consider the loss of density at a particular node.
Lemma 3.7: For any i ≥ 0 and ε > 0, the inequality

D(Qi) − D(Qi+1) ≤ logD(Qi) + log 1/ε fails to hold with
probability at most ε.

Proof. Recall that each column of Qi is a payload vector
corresponding to a transmission between vi and vi+1. Let d =
D(Qi), and let Q′

i be a submatrix of Qi consisting of d dense
columns.

The proof relies on two observations. (1) In our coding
scheme, the jth transmission between vi+1 and vi+2 is a

1We remark that analyzing the flow paths separately does not in general
yield an optimal analysis. Moreover, an adversarial schedule Ψ might decom-
pose into flow paths F in several ways, and different F ’s may yield better
or worse analyses.

random linear combination of the transmissions that were
already received at vi+1. (2) By the time that this transmission
is sent, node vi+1 will have received at least j transmissions
from vi, plus possibly some additional unrelated transmissions.
(This follows from our construction of ξ.) Let us interpret these
observations in terms of matrices.

Observation (1) implies that each column of Qi+1 is a
random linear combination of columns of Qi, plus possibly
some (independent combinations of) additional vectors. We
will only concern ourself with linear combinations of columns
in Q′

i, so we may write Qi+1 = Q′
i ·R + N , for some matrix

N . Each entry of R and N is either zero, or contains a random
variable. These random variables are all independent, implying
that D(Qi+1) ≥ D(Q′

i ·R).
Observation (2) implies that T (R) = d. So Lemma 3.3

implies that rank(R) ≥ d− γ fails to hold with probability at
most (d − γ)2−γ−1. When this inequality holds, Lemma 3.6
shows that d − γ ≤ D(Q′

i · R) ≤ D(Qi+1). Setting γ =
log d + log(1/ε) concludes the proof. �

The preceding lemma immediately yields a bound on the
cumulative loss of density.

Lemma 3.8: For any j ≥ 0 and ε > 0, the inequality c(ξ)−
D(Qj) ≤ j · (log c(ξ) + log 1/ε + log j) fails to hold with
probability at most ε.

Proof. Applying Lemma 3.7 and observing that D(Qi) ≤
c(ξ) shows that the inequality

D(Qi)−D(Qi+1) > log c(ξ) + log 1/ε + log j

holds with probability at most ε/j. Recalling that D(Q1) =
c(ξ), we have

D(Qj) = c(ξ)−
j−1∑
i=1

(
D(Qi)−D(Qi+1)

)
.

Applying a union bound over all 1 ≤ i < j shows that the
inequality

D(Qj) < c(ξ)− j ·
(
log c(ξ) + log 1/ε + log j

)
holds with probability at most ε. �

Now, we consider the loss of density over all paths ξ. Sup-
pose that F consist of p flow paths, and let `max = maxξ `(ξ)
be the length of the longest one. Let n =

∑
ξ c(ξ) denote

the total capacity of the schedule. Also, let Q(ξ) denote the
final matrix (of payload vectors) on path ξ. Then Lemma 3.8
together with another union bound shows that the inequality

n−
∑

ξ

D(Q(ξ)) ≥ p`max

(
log n+log 1/ε+log(p`max)

)
(1)

holds with probability at most ε.

D. Decoding at the sink

The output symbols available at the sink are then described
by the matrix L = [Q(ξ1)| . . . |Q(ξp)]. (Here the ”|” symbol
denotes column-wise matrix concatenation.) Clearly D(L) =∑

ξ D(ξ). Successful decoding occurs when L has rank k. Our
discussion of (1), together with Lemma 3.5 yields our main
theorem for dense codes and adversarial schedules.



Theorem 3.9: For any adversarial schedule with capacity at
least

k + plmax

(
log k + log 1/ε + log(plmax) + 1

)
+ log 1/ε + 1,

our coding scheme fails to deliver an input message of size k
symbols to the sink with probability at most ε.

In particular, if plmax log 1/ε = o(k) and ε = o(1), the
scheme has vanishing overhead and vanishing error proba-
bility. For instance, we may take ε = e−

√
k and plmax =

o(
√

k/ log k).

IV. CHUNKED CODE ANALYSIS

In this section, we will view the input message as being
logically partitioned into q contiguous chunks of α = k/q
symbols. We will refer to α as the aperture2 of the code.
The coding scheme at each node in the network is as follows:
the node chooses a chunk at random, and transmits a symbol
according to the dense coding scheme (applied to that chunk
only).

Our analysis of the chunked coding scheme proceeds in
two parts. For any fixed adversarial schedule, we first show
that the schedule’s flow is distributed evenly among all chunks
with high probability (Section IV-A). Then we apply the dense
coding result (as in Section III) to argue that all chunks decode
(Section IV-B).

A. Flow for a Fixed Chunk ω

In this section we will consider a fixed flow path ξ =
(v0, v1, . . . , v`(ξ)) and we will show that all chunks receive
a roughly even allocation of the flow. First, some terminology
is needed. Let n = c(ξ), and let l = `(ξ). If ω ∈ [q] is
a particular chunk, and a transmission contains information
pertaining to chunk ω, then we call it an ω-transmission.

Theorem 4.1: For each chunk ω ∈ [q], the ω-transmissions
form a flow of capacity at least

(
1−Õ

(
l3/4(q/n)1/4

) )
·(n/q)

with probability no less than 1− ε, for ε > 0, so long as

l3 · ln(l/ε) = o(n/(q log n)).
Thus, in order to have a capacity-achieving code, the length

of each flow path should not be too long, and the capacity
of the flow path should be large (even when divided into
q chunks). In practice, one might imagine using our coding
scheme to send large files on the internet. Each symbol might
have size 1KB, a file might contain tens or hundreds of
thousands of symbols, and communication paths might have
30 hops. In this scenario, the assumption of Theorem 4.1
would certainly be satisfied, so long as the number of chunks
is roughly one thousand.

Proof Sketch: The statement of Theorem 4.1 seems quite
intuitive. By standard concentration arguments, any edge in
the flow path has roughly a 1/q fraction of its transmissions
chosen to be ω-transmissions. However, this fact alone does

2This concept is derived from an ongoing project [13] which seeks to
improve the cache-performance of rateless erasure codes. Section VI-C
discusses this work further.

not yield the theorem. One complicating factor is that ω-
transmissions must be evenly “spread out” in order to ensure
that they lead to valid flow paths. For example, if node vi

chose its last n/q transmissions as ω-transmissions, and node
vi+1 chose its first n/q transmissions as ω-transmissions, then
the chunk ω could have no flow paths whatsoever. However,
such an arrangement of ω-transmissions is unlikely, and this
observation is what we formalize below.

Fix a particular node vi. We will consider three categories
of transmissions: those arriving at vi, those departing from
vi, and those arriving at vi+1. The latter two categories of
transmissions are identical content-wise, but they may have
been reordered by the channel. This issue makes it convenient
to treat the two categories separately.

Our analysis partitions each category of transmissions into
b contiguous “buckets”, where b is a parameter to be chosen
later. The first n/b transmissions are in the first bucket, the
next n/b transmissions are in the second bucket, and so on.
For each bucket, a standard concentration argument shows
that the number of ω-transmissions will be not much less
than its expectation with high probability. So we may fix a
value µ′ which is slightly less than the expectation, and choose
precisely µ′ ω-transmissions from each bucket. These chosen
transmissions are called good, and the process for choosing
good transmissions will be specified shortly.

Now to show that the ω-transmissions have many flow paths,
we want each ω-transmission departing node vi to be “matched
up” with a ω-transmission that arrived earlier at node vi. Our
bucketing scheme3 makes this straightforward. The flow paths
will consist of good transmissions. For j < b, all good ω-
transmissions in the jth bucket arriving at vi can be matched
with good ω-transmissions in the (j + 1)th bucket departing
vi. Any ω-transmission in the bth bucket arriving at vi is
considered to be lost.

There is one remaining issue to be addressed. Each trans-
mission from node vi to node vi+1 belongs to two categories:
departing transmissions of node vi and arriving transmissions
of node vi+1. A transmission may be considered “good” in
either or both of those categories. However, the transmission
can only be used on a flow path if it is good from the
perspective of both nodes, so we must exercise some care
in choosing transmissions to be good. Let us say that a
transmission is half-good if it is good from the perspective
of one node, but not the other. Half-good transmissions are
undesirable because they prevent formation of a flow path.

The probabilistic method [14] allows us to choose good
transmissions in a particularly simple way. As mentioned
above, we may assume that the number of ω-transmissions in
each bucket is close to its expectation. Consider choosing µ′ of
these transmissions uniformly at random to be good. By choice
of µ′, an ω-transmission is good from the perspective of node
vi with probability close to 1, say 1−ρ. An identical argument
holds for node vi+1, so an ω-transmission is good from the

3It has come to our attention that Wu [3] has independently developed a
similar analysis.



perspective of both nodes with probability at least 1−2ρ. Thus,
in expectation, the number of half-good ω-transmissions is
small. Therefore, there exists a choice of good ω-transmissions
that does not cause many half-good ω-transmissions.

To conclude the argument, any flow path of ω-transmissions
which arrived at node vi but could not reach node vi+1 can
either be attributed to landing in the bth bucket at node vi, or
to a half-good transmission. The number of such unfortunate
occurrences is small, and therefore the majority of the flow
paths can indeed continue onwards to node vi+1.

Proof Details: Consider our bucketing scheme described
above. The expected number of ω-transmissions in a given
bucket is µ := n/bq. There exists a value µ′ such that this
random variable is at least µ′ with probability at least 1−ε. A
Chernoff bound [14] shows that we may take µ′ := µ−c′

√
µ,

where c′ is a function of ε. Similarly, the random variable is
at most µ′′ := µ + c′′

√
µ with probability at least 1 − ε. We

will specify c′ and c′′ later.
The probability that a ω-transmission is not chosen to be

good in a given category is at most

ρ := (µ′′ − µ′)/µ′ = (c′′ + c′)
√

µ/(µ− c′
√

µ)
= O

(
(c′′ + c′)/

√
µ
)
.

By the Chernoff bound mentioned above, the number of ω-
transmissions is Θ(bµ) with high probability. Our probabilistic
construction ensures that the number of half-good transmis-
sions is at most a 2ρ fraction of this quantity, i.e.,

2ρ ·Θ(bµ) = O((c′′ + c′)b
√

µ) = O((c′′ + c′)
√

nb/q).

On the other hand, the number of ω-transmissions lost due
to landing in the bth bucket is at most µ′′. Summing over all
vertices in the flow ξ, the total number of lost ω-transmissions
is

O
(
l
(
n(c′′ + c′)/

√
µ + µ′′

))
(2)

= O
(
l
(
(c′′ + c′)

√
nb/q + (n/bq)

))
. (3)

We now specify c′ and c′′ such that the bound of (2) holds
with good probability. We desire that the ω-transmissions are
well distributed in each bucket at each node, and for each
ω ∈ [q]. Therefore we must union bound over b, l, and q. A
standard application of Chernoff bounds shows that we achieve
an overall failure probability of ε by taking both c′ and c′′ to
be O

(√
log(lbq/ε)

)
= O

(√
log(ln/ε)

)
.

The final parameter remaining to be specified is b; we
address this issue now. We define b =

⌈√
n/ql(c′′ + c′)

⌉
;

the ceiling has negligible effect so long as ql(c′′+ c′) = o(n).
The number of lost ω-transmissions now becomes

O
(
l
(
(c′′ + c′)

√
nb/q + (n/bq)

))
= O

(
l

√
n(c′′ + c′)

q

(( n

ql

)1/4

+
√

l

))
.

As argued above, the total number of ω-transmissions is
Θ(bµ) = Θ(n/q) with high probability. Therefore a simple

calculation shows that the number of lost ω-transmissions
is asymptotically less than the total number, so long as
l3 · (c′ + c′′)2 = o(n/q), i.e., l3 · log(ln/ε) = o(n/q). This
completes the proof of Theorem 4.1.

B. All Chunks Decode

The main result of this paper is the performance of chunked
coding on adversarial schedules:

Theorem 4.2: Let an arbitrary adversarial schedule with
maximum flow path length lmax, and decomposition into p
flow paths be given, and let n =

∑
ξ c(ξ). An input message

of k symbols can be delivered from the source to the sink with
probability of failure no bigger than ε > 0, as long as:

• l3max · ln(k p lmax/ε) = o(k/q), and
• n = (1+o(1)) ·

(
k +p lmax q log(k p lmax/ε)+ q log q +

q log 1/ε + q
)

Furthermore, the encoding, decoding, and recoding algorithms
take k/q symbol operations per input message symbol.

This theorem follows immediately from Theorem 4.1, com-
bined with a union bound over all chunks, and an application
of Theorem 3.9. In one particular instance of arguments
choice, we obtain that:

Corollary 4.3: Under the conditions of Proposition 4.2
where additionally lmaxp = O(1) and q = k/ log2 k, chunked
coding requires log2 k symbol operations per input symbol for
encoding, decoding and recoding, and achieves probability of
error ε = 1/kc for arbitrary constants c > 0. Furthermore, the
reception overhead h(k) satisfies h(k) = O(k/ log1/4 k) =
o(k). (The derivation of this corollary is deferred to the
Appendix.)

This corollary allows us to contrast chunked coding for
adversarial schedules to LT coding for regular erasure chan-
nels. In both cases the error probability decreases as O(1/kc).
Chunked codes are computationally more expensive, requiring
O(log2 k) operations per input symbols, compared to O(log k)
for LT codes. And finally, the overhead of chunked codes
decreases as O(k/ log1/4 k), compared to O(

√
k log2 k) for

LT codes.

V. LINEAR-TIME CODES

In [15] Luby et al. introduced the concept (and the first
instance) of a practical erasure code, which was later improved
to a practical rateless erasure code in [9], [10]. A practical
rateless code is one whose encoding algorithm produces an
output symbol in O(1) time (we use the term time to refer to
symbol operations) after a linear-time, i.e., O(k), preprocess-
ing stage, and whose decoding algorithm recovers the input
message in linear time (or equivalently O(1) time per input
symbol). Additionally, a practical code is parameterized by
its overhead λ > 0 and probability of failure ε > 0: for a
message of size k, the decoder fails to recover the original
message after receiving n = (1 + λ)k output symbols with
probability at most ε. Practical codes are distinguished from
classical Shannon codes (and from LT codes) in two ways.
(1) They have an arbitrarily small, but fixed, overhead that



Code Preprocess Cost Encoding cost Decoding cost
Fountain O(k ln 1/λ) O(ln 1/λ) O(ln 1/λ)
Chunked O(k ln 1/λ) O(λ−4 ln 1/λ) O(λ−4 ln 1/λ)

TABLE II
COMPARISON OF PRACTICAL CODES WITH ERROR PROBABILITY

poly(1/k).

does not vanish with the input size. (2) Their probability of
error vanishes (slowly) as poly(1/k); in other words, practical
codes have a zero-exponent probability of error. In the case
of Tornado codes, the error probability is a non-vanishing but
arbitrarily small constant.

Naturally, the magnitude of λ and ε influences the running
time of the code (independently of k). The Raptor and On-
line [9], [10] code designs (referred to as Fountain Codes)
with appropriate choice of precode achieve poly-logarithmic
dependence on λ when ε = poly(1/k). For comparison with
Fountain Codes, we developed a practical version of Chunked
Codes which combines the original design with a suitable
precode. Table II summarizes our results, which follow from:

Theorem 5.1: For any given overhead λ > 0 and any
network with ϕ = p · lmax, there is a Practical Chunked Code
that preprocesses the input message in O(k ln 1/λ) symbol op-
erations, computes an output symbol in O

(
(ϕ3/λ4) ln(ϕ/λ)

)
symbol operations at the source as well as at intermediate
nodes, decodes the message in O

(
(ϕ3/λ4) ln(ϕ/λ)

)
symbol

operations per input symbol, and fails to decode with proba-
bility no larger than 1/kc for any constant c.

We will also remark, without proof, that when the net-
work is reduced to a single link, i.e. the classical Erasure
Channel setting, the above theorem still holds while the
O
(
(ϕ3/λ4) ln(ϕ/λ)

)
terms are replaced by O

(
λ−2 ln(1/λ)

)
.

A. Proof Sketch

The idea of the construction is similar to the one used in
the Raptor Codes design. First, a precode is applied to the k
input symbols to produce roughly n ≈ (1+λ/2)k intermediate
symbols. The precode does not have to be capacity achieving,
but it has to be able to recover the k input symbols from
(1 + λ/4)k intermediate symbols in linear-time with error
probability no larger than 1/kc. Next we apply a slightly-
modified variant of the Chunked Code to the intermediate
symbols. This modified code can recover the necessary (1 +
λ/4)k intermediate symbols from (1+λ)k output symbols in
linear time with exponentially vanishing probability of error.

Observe that the use of the precode eliminates the require-
ment that the Chunked Code achieves capacity, thus evading
“the curse of the Coupon Collector”. In turn, this allows us
to shrink the aperture (number of symbols per chunk) to
a constant size, thereby reducing all computational costs to
linear.

B. Proof Details

Precode: Our formal requirements for the precode are: it can
be any erasure correcting code of dimension k, block size

n, rate R = (1 + λ/2)/(1 + λ), and it must be able to
recover successfully from a (λ/4)/(1 + λ) = (1 − R)/2
fraction of erasures with error probability 1/kc. (This setup
is identical to the one used in [9].) A variety of codes fulfill
these requirements. One particular choice is a right-regular
LDPC code with message edge degree distribution Ω(x) =
(2x+3x2)/5 (i.e., 2/5th of the edges have message-side degree
2, and 3/5th have degree 3). The properties of these codes are
discussed in detail in [16].

Linear-time Chunked Code: To show that a Chunked Code can
be concatenated with a precode, we will prove:

Theorem 5.2: For any λ∗ > 0, θ∗ > 0 and a network with
ϕ = p · lmax, the Chunked Code with aperture

α = O

(
ϕ3

λ4
∗

log
ϕ

θ∗λ∗

)
decodes a (1 − θ∗)-fraction of the n intermediate message
symbols from (1+λ∗)n output symbols with error probability
e−O(n).

Proof. As in Section IV-A we focus on a fixed chunk ω.
Let ρ be the probability that ω fails to decode. We will show
that, for α as above, we have ρ < 2θ/3. Hence the expected
number of chunks that fail to decode is at most ρn. Moreover,
the number of failed chunks is tightly concentrated around
this expectation. This concentration follows from a standard
martingale argument where the ith in the martingale sequence
reveals which chunk is related to the ith output symbol. (See,
e.g., Alon and Spencer [14].) Therefore the theorem follows
so long as we can analyze ρ.

For any integer flow value f > 0, we have that ρ ≤ ρR +
ρF where ρF is the probability our code’s random choices
fail to provide chunk ω with a flow of capacity f , and ρR is
the probability that ω fails to recover conditioned on having
received a flow of capacity at least f . We aim to show that:

ρF < θ∗/3, and (4)
ρR < θ∗/3 (5)

By Theorem 3.9 inequality (5) holds as long as:

f = α + ϕ (log α + log 3/θ∗ + log ϕ + 1) + log 3/θ∗ + 1

In order to take care of inequality (4) we need to use
a variant of Theorem 4.1 that does not “union-bound over
all chunks” since we are interested in the flow allocation of
one chunk only. One easily verifies (using variable names as
above):

Lemma 5.3: For a fixed chunk ω ∈ [n/α], the ω-flow has
capacity W = µ− L where µ = (1 + λ∗)α and:

L = O

(
ϕµ1/2

(
log

ϕµ

θ∗

)1/4((
µ/ϕ

)1/4 + ϕ1/2
))

with probability no less than 1− θ∗/3.
Consequently, inequality (4) holds as long as W ≥ f , which

asymptotically resolves to α = O
(
(ϕ3/λ4

∗) log(ϕ/θ∗λ∗)
)
.

(The details of resolving W ≥ f are deferred to the Ap-
pendix.) �



Combining the Precode and the Code: As before, let λ > 0
be the desired overhead of the Practical Chunked Code (i.e.,
the combined Linear-time Chunked Code with a precode). It
is straightforward to verify that when the precode parameters
are as above, and the Chunked Code parameters are θ∗ =
(λ/4)/(1+λ) and λ∗ = λ/2, the combined code design fulfills
the desired requirements.

It is worth nothing that since the error probability of the
Chunked Code vanishes exponentially, the combined code
inherits the error probability of the precode. Therefore a
stronger precode immediately results in a stronger combined
code.

VI. DISCUSSION

A. Adversarial Schedules

Previous work has studied network coding in the context
of packet networks (see, e.g., [1], [2], [3], [4]). In much
of this work, the packets lost on the network channels are
modeled in the natural manner—as a stochastic process. In this
paper, we have adopted a different approach, which we call
adversarial schedules. Our model assumes that the successful
packet transmissions are chosen by an adversary who knows
our coding scheme but not its random choices. Additionally,
packets may also be reordered and experience arbitrary delays.

Our adversarial model is strictly stronger than the aforemen-
tioned stochastic models, but yet the results that one can derive
in this stronger model are essentially identical to those that can
be derived in many weaker models (e.g., simple models based
on Bernoulli or Poisson packet injections with i.i.d. losses). An
explanation for this phenomenon is that the schedules typically
generated by those stochastic models are in fact schedules that
are intuitively “hard” for network coding schemes.

Thus our results based on adversarial schedules are not
much stronger in a technical sense than those that one could
derive with stochastic channels (other than, perhaps, the issue
of reordered packets). The key benefit, we believe, of adver-
sarial schedules is that one can eliminate the randomness of
the channel from the analysis of the coding scheme (which is
itself random). The resulting analysis is, we believe, clearer
both conceptually and notationally.

B. Coding Delay

The notion of coding delay has been discussed in [17] as a
primary characteristic of a coding scheme. (The traditional no-
tion of rate is an other example of a primary characteristic that
they consider.) We take a moment to explain how adversarial
schedules relate to delay.

In brief, [17] describes a network environment as a (de-
terministic or probabilistic) set of transmission opportunities.
For example, in the Discrete Bernoulli model a transmission
opportunity is present at each clock tick between any pair of
connected nodes. It is the job of the coding scheme to decide
whether to utilize a transmission opportunity. Should a trans-
mission opportunity be utilized, a packet is generated and sent.
It may or may not be received depending on whether it is lost
during transmission (according to the link’s erasure behavior).

If the packet is received, the transmission opportunity has been
“utilized successfully.” Notice that, traditionally, the job of a
coding scheme is restricted to the packet generation (and the
decoding at the sink), not the utilization choices.

The set of successful utilizations are, by definition, an
adversarial schedule. Roughly, a coding scheme is called
“capacity-achieving” if the flow capacity that it needs to
deliver the message successfully approaches the message size
asymptotically. It is important to notice how this definition
of capacity is completely decoupled from the transmission
opportunity utilization choices of the coding scheme. One can
envision schemes that forgo plenty of opportunities, and in
fact [17] explains that this makes it easier to achieve capacity.
The notion of coding delay captures the extent to which a
coding scheme forgoes transmission opportunities.

To summarize this discussion: the language of adversarial
schedules is complementary to the notion of delay.

C. Is practical really practical?

We have already observed that one qualitative difference
between Practical Chunked Codes and the state-of-the-art
Raptor Codes is the polynomial dependence on the overhead
in the former versus the poly-logarithmic in the latter. Is this
difference significant?

A major difficulty with using Raptor Codes in some practi-
cal scenarios is that its encoding and decoding algorithms are
rather “cache-unfriendly”. This issue precludes Raptor Codes
from being applied to very large messages (to the order of
a few hundred gigabytes and more). Chunked coding, on the
other hand, has some beneficial characteristics that may help in
these scenarios. One useful characteristic is: during decoding,
the data exhibits some locality properties. For example, the
data needed to decode a single symbol also suffice to decode
that symbol’s entire chunk.

A detailed investigation of these performance issues is
beyond the scope of the current paper. These issues are the
focus of an ongoing research project [13] that focuses on op-
timizing Chunked coding for real-world performance. In [13],
the Chunked coding scheme is generalized in that an input
message of k symbols is associated with k chunks (instead
of only k/α), such that the ith chunk starts at the ith input
symbol and comprises a contiguous block of α consecutive
input symbols. The encoding and decoding algorithms are
modified appropriately. This coding scheme is dubbed Smooth
Perpetual Coding. Roughly speaking, Smooth Perpetual codes
try to ensure that the matrix of coding coefficients is banded,
and thereby obtain efficient decoding algorithms.

Experimental results indicate that Smooth Perpetual Codes
require apertures that are orders of magnitude smaller than
their Chunked coding equivalents. In particular, a Smoothed
Perpetual Code (in place of a Linear Chunked Code) with α =
32 achieves approximately near-Raptor Code performance
(using comparable implementations of both). Nevertheless, the
usefulness of Smooth Perpetual Codes is still contingent upon
the existence of a special kind of precode, described in [13]
as an open problem.
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APPENDIX

DETAILS OF COROLLARY 4.3

We begin by fixing q = k/ log2 k, lmax = O(1) and p =
O(1). By retracing the derivation of Theorem 4.2 one can see
that with probability at least 1− ε/2q the ω-flow for any fixed
ω ∈ [q] is:

W =
n

q
−O

((n

q

)3/4

c1/2

)
(6)

where c = O(
√

lnn +
√

ln 1/ε +
√

ln q). (Here c corresponds
to c′ + c′′ from Theorem 4.2’s proof.)

On the other hand, according to Theorem 3.9 each chunk
ω must receive at least:

f =
k

q
+ O(ln k + ln 1/ε + ln q) (7)

flow in order to recover with probability no less than 1−ε/2q.
Therefore, whenever:

W ≥ f (8)

holds for all chunks, the entire input message is recovered
with probability at least 1 − ε (using a union bound over all
q chunks). When ε = 1/kc for any constant c, inequality (8)
resolves to n = k + O(k/ ln1/4 k).

DETAILS OF THEOREM 5.2

The inequality W ≥ f resolves to:

(1 + λ∗)α−O

(
ϕµ1/2 ln1/4 ϕµ

θ∗

((µ

ϕ

)1/4

+ ϕ1/2
))

≥ α + O

(
ϕ ln

αϕ

θ∗

)
(9)

Observing that inside the O(·) notation µ is equivalent to α
and unfolding, we get:

λ∗α ≥ O

(
ϕ ln

αϕ

θ∗︸ ︷︷ ︸
A

+
(
ϕα
)3/4 ln1/4 ϕα

θ∗︸ ︷︷ ︸
B

+

ϕ3/2α1/2 ln1/4 ϕα

θ∗︸ ︷︷ ︸
C

)
(10)

We now examine each of the three terms on the right
separately with respect to the left side. We can do this due to
the O(·) notation. Additionally, we will employ the following
lemma multiple times:

Lemma 1.1: For x ≥ 0, the inequality x ≥ c lnx is satisfied
for all x = Ω(c ln c + c ln ln c).

Term A resolves to:

α ≥ O

(
ϕ

λ∗
lnα

)
and α ≥ O

(
ϕ

λ∗
ln

ϕ

θ∗

)
(11)

Both conditions are met when:

α ≥ O

(
ϕ

λ∗
ln

ϕ

λ∗θ∗

)
(12)

Term B resolves to:

α ≥ O

(
ϕ3

λ4
∗

lnα

)
and α ≥ O

(
ϕ3

λ4
∗

ln
ϕ

θ∗

)
(13)

One verifies that both conditions are met when:

α ≥ O

(
ϕ3

λ4
∗

ln
ϕ

λ∗

)
(14)

Term C is superseded by term B, i.e. whenever α is bigger
than term B (with respect to the O(·) notation) it is also bigger
than term C.

Finally, inequalities (12) and (14) are combined in the single
condition:

α ≥ O

(
ϕ3

λ4
∗

ln
ϕ

λ∗θ∗

)
(15)


