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Mycobacterial infections
The advent of high-throughput platforms for the inter-

rogation of biological systems at the cellular and mole-

cular levels has allowed living cells to be observed and

understood at a hitherto unprecedented level of detail

and has enabled the construction of comprehensive,

predictive in silico models. Here, we review the appli-

cation of such high-throughput, systems-biological

techniques to mycobacteria – specifically to the perni-

cious human pathogen Mycobacterium tuberculosis

(MTb) and its ability to survive in human hosts. We

discuss the development and application of transcrip-

tomic, proteomic, regulomic, and metabolomic tech-

niques for MTb as well as the development and

application of genome-scale in silico models. Thus far,

systems-biological approaches have largely focused on

in vitro models of MTb growth; reliably extending these

approaches to in vivo conditions relevant to infection

is a significant challenge for the future that holds

the ultimate promise of novel chemotherapeutic inter-

ventions.
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Introduction

The pathogenesis of MTb infection is determined by a com-

plex interplay of response of host cells to bacilli that invade

and replicate in macrophages and to extracellular bacilli as

well as response of the pathogen to the changing environ-

ments in the host. Global approaches to understanding the

interaction between host and pathogen offer the prospect of a

more integrated understanding of the dynamic behavior of

the system. This requires integration of large-scale data that

can be used to build a model of this interaction which in turn

can answer disease relevant questions and generate testable

hypotheses. To unravel the network of such a system,

whether regulatory, structural or catalytic, requires hetero-

geneous datasets to be integrated with such datasets collected

from high-throughput techniques, more recently referred to

as the ‘omics’ approaches. To date, most of the data have

consisted of transcriptional data superimposed on recon-

structed metabolic pathways based on genomic information

of both the host and the pathogen [1–6]. However, systems

approaches benefit from a broad range of large scale data

collection including proteins, metabolites, small stable RNAs,

lipids, protein–protein interactions and protein–nucleic acid

interactions. We will discuss the omics approaches that have

been applied to MTb and finally how some of the data
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collected from these omics approaches have been applied to

reconstruct metabolic models of MTb metabolism.

Transcriptomics

Early studies with knockout mutants indicated the impor-

tance of iron, nutrient, cation and carbon source (reviewed in

[7]), but the underlying networks were unknown. DNA

microarrays have to date proven the most sensitive tool for

unraveling responses of pathogens to their host and of host to

pathogen (reviewed in [8]). Transcriptional profiling under in

vivo relevant conditions has been used to understand the

regulatory networks and potential metabolic pathways that

may be active during host pathogenesis. Thus, microarray

analysis under defined in vitro conditions such as exposure to

lung surfactant, starvation, nitrosative stress, iron restriction,

low oxygen and acidic pH [9–19] has indicated the impor-

tance of certain transcriptional pathways for adaptation or

survival under these in vivo pertinent conditions. Transcrip-

tional profiling of MTb during parasitism of macrophages has

enabled the regulatory and catalytic pathways that are rele-

vant during infection, growth and survival of these host cells

to be explored and to be correlated to previous in vitro

transcriptional analyses [20,21]. Thus, the importance of

the dormancy response regulator DosR in orchestrating the

metabolic slow-down that occurs when respiration on oxy-

gen as terminal electron acceptor becomes limiting [22,23], of

WhiB3 in maintaining redox homeostasis [24,25], of the

Rv3574-encoded transcriptional regulator in controlling cho-

lesterol metabolism [26], of the RshA-PknB-SigH regulatory

pathway in adaptation to stress [27], of IdeR in regulating iron

assimilation (reviewed in [28]), of RelA in coordinating the

stringent response [11] and of PhoP in regulating the expres-

sion of pathogenic lipids and other virulence factors [29] in

vivo was elegantly demonstrated by a combination of in vitro

transcriptional profiling, mutant knockout studies and ana-

lysis of gene expression in infected hosts. Transcriptional

profiling along with analysis of stored lipids in the form of

triacylglycerides of MTb expectorated in patient sputum has

indicated that these bacilli are probably derived from an

environment that allows slow replication based on the obser-

vation of an upregulated dormancy response and a high

content of triacylglycerides which are associated with stress

adaptation [30]. Microarray analyses of MTb derived from

other in vivo sources such as chronically infected mice [16,17]

and a variety of lesions from human TB patients [31] have

corroborated the relevance of in vitro findings but also

pointed to the environmental heterogeneity that MTb experi-

ences in vivo. The multitudes of environmental cues that MTb

experiences in vivo are not only apparent by analysis of

different lesions [31] but also evident within one lesion

[32] which makes simple extrapolation of data from pooled

in vivo samples impossible. The transcriptional profiling

under defined in vitro conditions has been and will be useful
e76 www.drugdiscoverytoday.com
in finding indicator genes, proteins or metabolites of envir-

onmental cues that can be used as a sensor to explore the

microenvironment of MTb during human pathogenesis [33].

The regulatory networks that control Corynebacterium glu-

tamicum transcription have been deduced based on transcrip-

tional profiling data and analyses of individual regulators

[34]. Corynebacterium is taxonomically related to the myco-

bacteria and the transcriptional networks that control MTb

gene expression have been deduced from conserved genes

and binding sites upstream of these genes between these two

organisms [35]. A large-scale transcriptional network of MTb

was compiled based on gene regulatory interaction from the

literature, conserved transcription regulatory pairs between

Escherichia coli and MTb as well as the complete list of MTb

operons with the regulation of all genes in an operon

assumed to occur as a single transcriptional unit affected

by a transcription factor [36]. The response of this transcrip-

tional network during MTb adaptation to hypoxia or starva-

tion was explored using published microarray data which

showed the temporal responses of transcriptional subnet-

works at various stages of the transition to non-replicating

persistence [36]. This systems levels analysis is useful for

probing the in vivo responses of MTb to similar environments.

The information that is gained from microarray analyses of

gene expression is of course only as good as the functional

annotation of the pathogen’s genome. Sequencing of gen-

omes of clinical isolates has revealed some differences in open

reading frames between strains in terms of both differences in

annotation and presence of unique genes [37]. In addition,

polymorphisms and deletions in genome sequence have

pointed to the relevance or lack thereof of certain metabolic

pathways for certain aspects of TB pathogenesis [38–40]. The

functional significance of genetic diversity between strains

has also been explored by transcriptome analyses [41]. In

these analyses, transcriptional profiles during in vitro growth

could be correlated to the clade that the isolates belonged to,

with certain gene clusters being commonly up- or down-

regulated in one or more of the 5 global phylogeographical

lineages included in the study. The variation of expression

observed in the basal transcriptomes of the clinical strains

was unexpectedly high if the absolute genomic diversity of

MTb strains relative to other bacteria is taken into considera-

tion [42]. The variation in transcription profiles during in vitro

growth is, however, an indicator of the functional conse-

quences of the high-proportion of non-synonymous single

nucleotide polymorphisms that have been observed in the

genome sequences between various clinical strains [41,42].

Growth in macrophages of these clinical isolates was asso-

ciated with clade-, genotype- and strain-specific fitness pro-

files and transcriptional profiles of these strains during

parasitism of resting or activated phagocytes allowed correla-

tions to be made between gene expression signatures and

intracellular phenotypes [41]. A core transcriptome asso-
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ciated with intracellular growth of a panel of MTb strains was

derived consisting of metabolic pathways such as hypoxia,

iron storage, oxidative and nitrosative stress, cell wall remo-

deling, and fatty acid metabolism that were previously

reported to be important for macrophage survival

[20,21,41]. Although intra-macrophage transcriptomes were

more divergent than in vitro transcriptomes, the correlation

was still higher between strains of the same lineage than

inter-genotypic expression profiles and corroborated geno-

type-specific differences in virulence gene expression that

were known to play a role during survival in the host.

The microarrays that have been used to date to analyze

transcription of MTb have not probed the regulatory ele-

ments associated with intergenic regions such as small stable

RNAs. Tiling arrays have been used to analyze the Listeria

transcriptome including RNAs derived from intergenic

regions in response to in vitro, ex vivo and in vivo growth

which highlighted the importance of small stable RNAs, anti-

sense RNAs and 50 and 30 untranslated regions including

riboswitches in its metabolism [43]. The role of small RNAs

in controlling gene expression in MTb has only recently

started to be explored [44].

Genome wide gene essentiality

Whole genome transposon mutagenesis has allowed the role

of genes during growth or survival under in vivo relevant

conditions to be explored. The essentiality of genes for sym-

biosis of Bacteroides in the gut [45], Salmonella typhi tolerance

to bile [46], Haemophilus influenza in the mouse lung [47] and

in vitro fitness of Streptococcus pneumonia [48] was analyzed by

insertion sequencing, high-throughput insertion tracking by

deep sequencing or high-throughput parallel sequencing of

transposon mutants before and after exposure to the respec-

tive stresses. This has allowed every gene in the genomes of

these pathogens to be explored for their role under the

conditions of interest in a systems-wide approach. Initial

saturating transposon mutagenesis studies of MTb assessed

the contribution of genes to growth of MTb during growth in

rich medium in vitro [49,50]. The importance of genes that

were non-essential for in vitro growth in rich medium for

survival in infected mice [51,52] as well as growth on in vivo-

relevant carbon sources [53] could also be assessed using

genome-wide transposon mutagenesis libraries of MTb.

Proteomics

Proteomics has lagged behind transcriptomics due to instru-

mental and sensitivity problems although recent technical

advances especially in the field of tandem mass spectrometry

have made it possible to study the pathogenesis of organisms

by analyzing the spectrum of secreted proteins, the proteome

of virulence mutants in regulatory proteins or small RNAs,

the proteome of the pathogen in response to the host or to in

vivo relevant environmental cues (reviewed in [54]). Differ-
ential proteomics where proteins synthesized under an envir-

onmental condition of interest are fluorescently or

isotopically labeled or tagged to compare to a basal condition,

have allowed subtle variations in protein expression as well as

temporal changes in expression to be unraveled [54]. The

proteome of MTb in response to deletion of the pyruvate

kinase gene, a gene deletion observed in certain members of

the MTb complex, was determined and used to define the

metabolic pathways that were altered and the associated

metabolic consequences deduced from the altered proteome

[55]. These studies indicated that loss of pyruvate kinase was

associated with a shift in metabolism to growth on lipids for

energy generation as seen by increased expression of isoci-

trate dehydrogenase and beta-oxidation enzymes with con-

comitant decreased expression of isocitrate lyase and

gluconeogenic proteins. The proteome of cell membrane

associated proteins has been determined which has given

further insight into the localization and associated role of a

variety of plasma membrane-associated proteins [56]. Pro-

teome analysis of mycobacterial proteins probably targeted

for proteasomal degradation by conjugation to a ubiquitin-

like protein (PUP) has revealed that there were 103 candidate

PUPylation targets of which 52 were confirmed [57]. An

analysis of the pathways containing PUPylated proteins indi-

cated a high preponderance of targets on metabolic pathways

associated with rapid growth as well as an over-representation

of proteins from the MTb S-nitroso proteome [57,58] suggest-

ing the importance of proteasome degradation for protea-

some remodeling during metabolic growth arrest as well as

stress. Proteome studies of non-replicating as opposed to

replicating MTb have indicated that there are very few differ-

ences in the presence of components of the proteome, despite

large-scale transcriptional differences. However, the discre-

pancy between transcriptional and proteomic studies can be

addressed by studies of protein turnover which has revealed

the subtle dynamics of the response to stresses such as iron

starvation [59,60].

Proteomic analyses have been used to develop models of

protein–protein interaction networks which can be based on

interaction of proteins to form a functional enzymatically

active complex or interaction through their role in metabolic

or signaling pathways. Wet-lab experiments to experimen-

tally identify protein–protein interactions are plagued by

high numbers of false-negatives but especially false-positives.

Improvements in methods to identify protein interactions by

for example using dual affinity tagged bait proteins that are

used for in vivo interaction experiments followed by in vivo

cross-linking with formaldehyde or using dual affinity pur-

ification under fully denaturing conditions followed by

liquid chromatography–tandem mass spectrometric identifi-

cation have allowed networks of proteins that interact with

virulence factors in Salmonella to be revealed [61]. Protein

interaction networks that govern mycobacterial metabolism
www.drugdiscoverytoday.com e77
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have been constructed and have led to novel insights of the

function of proteins with previously unknown function as

well as the presence of a potential signaling pathway [62]. The

protein–protein interaction network of MTb was a crucial

component in the creation of a database for MTb drug target

identification which also takes into account flux balance

analysis, network analysis, information on protein essenti-

ality, comparative genomics with the host to assess unique-

ness of the target to the pathogen as opposed to its host, as

well as structural analysis of proposed ligand-binding sites

[63].

Regulomics

High-throughput chromatin immunoprecipitation (ChIP)

techniques for regulomic analysis of mycobacteria have been

developed and applied. Rodrigue et al. [64] have applied ChIP-

chip, where DNA fragments bound by immunoprecipitated

proteins are identified using microarrays, for various s factors

in M. bovis BCG. More recently, ChIP-seq, where DNA frag-

ments are instead identified using next-generation sequen-

cing, has been applied to MTb [65]. ChIP-seq offers a number

of advantages over ChIP-chip including lower cost, higher

resolution, and a lower requirement for input material [66].

Because of the very small genomes of mycobacteria compared

to the mammalian genomes for which ChIP-seq was first

developed, it is easy to obtain very high sequencing coverage

and hence very high resolution of the location and degree of

interaction at protein–DNA interaction sites. For the DosR

transcription factor of MTb, ChIP-seq followed by bioinfor-

matics analysis with the computational method CSDeconv

[65] allows accurate identification of individual binding sites

separated by as few as 40 bp.

Metabolomics

Metabolomic analyses of pathogens are extremely challen-

ging. For MTb in particular, quenching of metabolism in such

a way as to preserve the relative metabolite concentrations at

a specific point in time without causing leakage of metabo-

lites from cells is extremely challenging. The half-life of

cellular metabolites is generally in the order of milliseconds

or less thus immediate quenching requires addition of a vast

excess of subzero temperature solvent and confirmation that

the quenching method does not lead to cell leakage. In MTb

metabolite analyses have been done on monolayers of cells

grown on nitrocellulose filters to overcome the excessive

dilution and cell leakage issues of quenching cell suspension

[67,68]. These metabolite analyses have highlighted the role

of gluconeogenesis in MTb during growth on beta-oxidation

substrates and the importance of this pathway during macro-

phage infection as well as the unique flow of metabolites

through the two halves of the tricarboxylic acid cycle. Sub-

strate availability influences intermediary metabolite con-

centrations and this in turn affects the production of end-
e78 www.drugdiscoverytoday.com
products such as cell wall lipids. Jain et al. [69] demonstrated

that growth on propionate and other uneven chain length

fatty acids which are expected to increase intracellular pools

of methylmalonyl-CoA, affected the production as well as the

length of methyl-branched lipids such as sulfolipid-1 and

phthiocerol dimycocerosate. The chain length of phthiocerol

dimycocerosate was then used as an indicator of carbon

substrate pools in MTb infected mice which suggested that

MTb may oxidize odd-chain length fatty acids in vivo as

evidenced by the increased chain length of this cell wall lipid

[69].

In silico metabolic modeling

In silico metabolic modeling of living organisms offers the

lucrative prospect of integrating data from multiple omics

platforms to allow fast, inexpensive in silico experiments and

fundamental understanding of function and survival. Such

modeling falls into two major classes: kinetic modeling,

where chemical reaction dynamics are modeled using

coupled differential equations, and constraint-based model-

ing, where only the stoichiometric constraints of metabolic

reactions are imposed and predictions of metabolic behavior

are made by assuming that organisms regulate metabolic

fluxes so as to achieve an objective such as growth maximiza-

tion. Kinetic modeling is more detailed but suffers from the

requirement of knowing many parameters, such as reaction

rate constants, which cannot currently be measured on a

large scale, and its application is therefore restricted to spe-

cific, well-studied pathways. For MTb, kinetic modeling has

been applied to describe the dynamics of the tricarboxylic

acid (TCA) cycle and glyoxylate bypass [70].

Constraint-based modeling, by contrast, can be achieved

by simply knowing reaction stoichiometries and can there-

fore be applied on a genome-wide scale. Indeed, genome-

scale constraint-based modeling has proven to be powerful

tool for understanding and accurately predicting metabolic

behavior in a large variety of organisms [71]. An example of

such a model is iAF1260 [72], which models the metabolism

of E. coli and accounts for the action of 1260 enzyme-coding

ORFs and for the presence of 2077 reactions and 1039 meta-

bolites.

Using the method of flux-balance analysis (FBA) [73,74],

constraint-based models can be used to give predictions of

metabolic behavior, such as growth rates and metabolite

consumption and production rates. To make predictions

using FBA, the assumption needs to be made that organisms

regulate metabolic fluxes to achieve particular objectives,

such as growth maximization or maximization of ATP pro-

duction. Such an assumption, although seemingly artificial,

nevertheless produces high predictive capability. For exam-

ple, FBA can be used to predict whether or not an organism

grows under genetic modifications such as knockouts and in

the presence or absence of particular nutrients and, using
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Table 1. Constraint-based models of MTb

Model Number of reactions Number of metabolites Number of ORFs Reference

MAP 219 197 28 [77]

GSMN-TB 849 739 726 [78]

iNJ661 939 828 661 [79]
iAF1260, FBA predicts E. coli’s ability to grow under glucose

aerobic conditions with any single knockout of the 1260

modeled ORFs with 92% accuracy and its ability to grow

on over 300 different sources of carbon, nitrogen, phosphor-

ous, and sulfur with approximately 76% accuracy [72]. FBA

also predicts specific growth rates and metabolite consump-

tion and production rates for E. coli with high accuracy over a

variety of nutrient sources and over time [75,76].

For MTb, three constraint-based models have been con-

structed: the mycolic-acid pathway (MAP) model, and two

genome-scale models – GSMN-TB and iNJ661 (see Table 1).

The MAP model is a relatively small model focusing only on

the mycolic acid synthesis pathway of MTb. This pathway is

significant because mycolic acids are known to be important

for the growth, survival, and pathogenicity of MTb, and InhA

– a key enzyme in the pathway – is the target of the front-line

anti-tubercular drugs isoniazid and ethionamide. Using this

model, it is possible to identify other potential targets for

anti-tubercular drugs inhibiting mycolic acid production

[77].

GSMN-TB and iNJ661, by contrast, are genome-scale mod-

els in that they both model the effect of a significant fraction

of metabolic genes in the MTb genome. Both the models give

good agreement with experimentally observed growth rates

and metabolite consumption rates. Moreover, both the mod-

els were validated by comparing experimental measurements

of essentiality using transposon site hybridization (TraSH)

[50] with in silico predictions and achieved high levels of

accuracy (78% and 65% correct predictions, respectively

[78,79]).

Given genome-scale metabolic models, it becomes possible

to interrogate these models to simulate and understand MTb.

In particular, it becomes possible to predict, in silico, gene or

gene combinations that are necessary for the survival of MTb

in defined growth media or in an environment reflecting that

of host infection. targetTb [63], an in silico pipeline for

tuberculosis drug target identification, uses predictions

obtained from FBA to identify potential targets.

It becomes possible also to understand mycobacterial

metabolic capability and how particular perturbations, such

as the application of a drug, affect this capability and the

organism’s ability to survive. In a novel method for coupling

FBA with measurements of gene expression called E-flux,

Colijn et al. [80] use the GSMN-TB and MAP models coupled

with over 400 genome-wide expression measurements
[19,81] to identify drugs, drug combinations, and nutrient

conditions that inhibit mycolic acid production and the

specificity of this inhibition. E-flux correctly predicts seven

of the eight known fatty acid inhibitors in the tested expres-

sion compendium, including isoniazid and ethionamide, and

makes accurate predictions regarding the specificity of the

action of these compounds. Further, E-flux predicts several

additional potential modulators of mycolic acid biosynthesis

in MTb. Thus, E-flux demonstrates the capability of in silico

modeling to characterize the mechanism of drugs with

unknown mechanism.

In addition to employing either kinetic modeling or con-

straint-based modeling, it is possible to simultaneously

employ both approaches, using kinetic modeling for detailed

modeling of particular pathways of interest and using con-

straint-based modeling to extend beyond these pathways to

the genome scale. Fang et al. [82] have employed such a

combined approach to quantitatively model the response

of MTb to the growth inhibitors 3-nitropropinate and 50-O-

(N-salicylsulfamoyl) adenosine under particular nutrient

conditions, and achieved good correspondence with experi-

mentally measured dose–response curves.

Conclusion

The ultimate goal of systems biology of pathogens such as

MTb is to understand the metabolism of the organism in the

context of infection (Fig. 1). In the past few years much

progress has been made in the various omics approaches

aimed at understanding MTb metabolism. Clearly, the big-

gest challenge will be applying these high-throughput meth-

ods to in vivo models of this disease where the vast excess of

host proteins, DNA, RNA and metabolites makes identifica-

tion of the bacterial derived products extremely challenging.

Some transcriptional data are available for mouse and even

human tissues infected with MTb [16,17,31] but converting

this data to a form that allows modeling of metabolism has

proven difficult. Thus, the most robust data are currently only

available for various in vitro models of MTb growth. An

understanding of the environment in which MTb resides

in the host is, however, required to reconstruct the metabolic

models that would be most pertinent to in vivo pathogenesis.

Thus, determination of extracellular metabolites as well as

oxygen concentration in the various types of granulomas

would allow flux through the metabolic pathways to be

modeled. A recent study measured the oxygen concentration
www.drugdiscoverytoday.com e79
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Figure 1. Development of systems approaches for understanding MTb infection requires integrating information from all levels of understanding of

disease. At the highest level (a), information is gathered from tuberculosis patients ranging from understanding the pathology of disease from clinical data

and imaging studies and the epidemiology of human genetic variation in disease susceptibility and progression. Modeling of the dynamics of infection at the

level of the granuloma (b) builds on information acquired from host immunology as well as pathogen biology. Genomic information of MTb as well as clinical

strains of MTb has allowed metabolic networks (c) to be constructed that mirror the metabolic capabilities of this organism as well as the production of

metabolites that play a role in growth, survival and virulence. Data gathered from ‘omics’ studies such as transcriptomics, metabolomics and proteomics

have allowed reconstruction of dynamic metabolic networks that capture information of metabolic fluxes that occur under various environmental

conditions (d). The majority of work to date has been performed at the base level which includes focused studies of proteins, their function and structure

and their interaction with small molecules (e).

e80 www.drugdiscoverytoday.com
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in MTb- and M. bovis-infected rabbit granulomas to be mea-

sured which demonstrated the extreme hypoxic environ-

ment in which MTb can reside [83]. However, these studies

do not address the spectrum of oxygen concentrations and

associated substrate concentrations that can be expected in

the various heterogeneous granulomas that are observed in

human TB patients. Metabolomic analyses of granulomas

would be key to developing systems biology approaches to

MTb in the context of human pathogenesis. This would allow

us to fully exploit metabolic models for the identification of

metabolic chokepoints in vivo that could be targeted for

chemotherapeutic intervention.
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