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1 Introduction

The field of ethnomathematics is the study of mathematics in
the works of art of various cultures [2, 3, 9, 13]. The concepts
in this paper are inspired by the visual art ofsand drawings
that has developed independently in different forms in di-
verse cultures. Generally speaking, the artist draws a set of
dots on some flat surface (usually in the sand or in powder
on the floor) and then draws one continuous curve that sur-
rounds the dots and crosses itself repeatedly. Although not
universally the case, we focus on drawings in which there
is exactly one dot per bounded face (and no dots in the out-
side face). In particular, sand drawings made by theTshokwe
people in the West Central Bantu area of Africa are called
sona.

Sona drawings have been considered in the field of topol-
ogy under an equivalent guise as generic planar closed
curves (immersions of the unit circle into the plane). Sev-
eral topological invariants about such curves are proved by
Arnol′d [1], who also enumerated all sona drawings on small
numbers of dots. Calvarho [5] considers curves that are
“maximally looped”. Ozawa [11] considers the number of
bitangents, tangents shared by different points on the curve.

From a graph-theoretic perspective, sona drawings can be
viewed as4-regular planar maps with the additional property
that some Eulerian cycle “goes straight” at every vertex. This
class of underlying graphs is calledGaussian graphs; the
name is attributed to an observation made by Carl Gauss in
1830 [8] that was proved by Julius v. Sz. Nagy almost a hun-
dred years later [12]. More recently, Michael Gargano and
John Kennedy [7] introduced a more formal notion of Gaus-
sian graphs, which was later generalized by John Kennedy
and Brigitte and Herman Servatius [10]. The connection
between Gaussian graphs, generic closed curves, and sona
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drawings was first unveiled in [6], where many open prob-
lems about the topic are also posed.

In this paper we describe algorithms that generate sona
drawings under a variety of different models and constraints,
in particular settling some of the open questions from [6]
and raising several new questions. In particular, we study
sona drawings that turn only clockwise and adhere to a given
2-coloring of the points (Section 3), sona drawings that turn
only clockwise and minimize the total turn angle (Section 4),
polygonal sona drawings with the fewest links (Section 5),
and sona drawings on the square grid (Section 6). We also
show that the minimum-length sona drawing of a given point
set is within a constant factor of the length of the minimum
TSP tour of the point set (Section 7).

2 Definitions

A sona drawingor sona mapis a closed curve drawn in the
plane such that the curve does not touch itself without cross-
ing itself, and no more than two pieces of the curve intersect
at the same point. Asona drawing of a point setmust ad-
ditionally have exactly one point in each bounded face, and
zero points in the outside face. Asona vertexis a point at
which the curve self-intersects. Asona edgeis a piece of a
curve incident to exactly two sona vertices at its endpoints.
A sona faceis an empty region bounded by a cycle of sona
edges. Two sona faces areadjacentif they share one or more
sona edges. A curve or sona drawing isclockwise-turning
if it can be drawn continuously with all changes in direction
being locally right turns.

3 Two-Color Clockwise-Turning Sona Drawings

In this section, we consider the problem of finding a
clockwise-turning sona drawing for a2-colored point set
such that no two adjacent faces contain points of the same
color. Because every sona drawing has even vertex degrees,
its dual is bipartite, so it has a face2-coloring; the goal is
to make this2-coloring of the faces match the given color-
ing of the corresponding points inside the faces. As observed
in [6, Lemma 13], every2-colored point set has such acolor-
respectingsona drawing. On the other hand, it is easy to see
that every point set has a clockwise-turning sona drawing.

The challenge we address here is to simultaneously sat-
isfy both constraints, color respecting and clockwise turn-
ing. Not all 2-colored point sets have a color-respecting
clockwise-turning sona drawing. One family of such exam-
ples is monochromatic point sets in convex position. How-
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ever, we show that all nonmonochromatic colorings admit a
sona drawing of the desired type:

Theorem 1 Every set of red and blue points in the plane
with at least one point of each color admits a color-
respecting clockwise-turning sona drawing.

Proof sketch: First we show that it suffices to consider
points that lie arbitrarily close to thex axis, by a generic
rotation and scaling ofy by ε. Then we show how to decom-
pose the point setS into intervalsS1, S2, . . . , Sk, the last of
which wraps around from right to left, such that each interval
consists of zero or more points of one color followed by one
cap point of the opposite color, and such that the cap col-
ors alternate cyclicly red/blue. Then we visit each interval in
order as shown in Figure 1. 2
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Figure 1: A color-respecting clockwise-turning sona drawing
for S. The drawing incrementally incorporatesS1, S2, S3, S4.

4 Min-Winding Clockwise-Turning Sona Drawings

In this section, we consider the problem of finding a
clockwise-turning sona drawing for a given point setS that
has the minimum possible winding number, or equivalently,
the minimum possible absolute total turn angle. Thewinding
numberof a sona drawing is the winding number of the un-
derlying closed curve, that is, the number of complete clock-
wise turns made by a normal to the curve as we continu-
ously move its base along one complete cycle of the curve.
Here we suppose that the curve has finite length and, for sim-
plicity, is differentiable everywhere. Equivalently, the total
clockwise turn angle is360◦ times the winding number. For
clockwise-turning sona drawings, the winding number is al-
ways positive, and it can be computed as the number of times
a particular normal direction (say,+x) occurs as we trace one
complete cycle of the curve.

Proposition 2 The winding number of any clockwise-
turning sona drawing of two or more points is at least2.

4.1 Points in Convex Position

Proposition 3 For any setS of n points in convex position,
there is a clockwise-turning sona drawing with winding num-
ber equal to2 if |S| is even, or3 if |S| is odd.

Proof sketch: Figure 2 shows the casesn ∈ {2, 3}. Figure 3
shows the construction forn ≥ 4. 2

(a) (b) (c)

Figure 2: Clockwise-turning sona drawings. (a) Winding number
is 2. (b–c) Winding number is3.
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(a) Even number of points, wind-
ing number2.
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(b) Odd number of points, wind-
ing number3.

Figure 3: Clockwise-turning sona drawings for convex point sets.

4.2 Convex Peeling Layers

In this section, we relate the minimum winding number to
the number of convex-hull (onion) peeling layers:

Proposition 4 For any setS of points in general position de-
composing intok nested convex layers, there is a clockwise-
turning sona drawing with winding number at most4k − 1.

Proof sketch: We pierce all convex layers with a spike, then
visit each layer from the innermost out. In between two lay-
ers, we loop around a chosen pointp to ensure enough angu-
lar freedom to visit the next layer. Figure 4 shows examples
of the construction. 2
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Figure 4: Transitioning from one layer to the next begins by wrap-
ping aroundp.

4.3 Radial Convex Partitions

Figure 5 shows a limitation to the convex-layers approach of
Section 4.2: the number of convex layers can be large (here,
n/3) yet the point set can be partitioned into few disjoint
convex polygons (here,3). While it remains open whether
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the winding number of a clockwise-turning sona drawing is
at most a constant factor times the size of such a minimum
convex partition, we consider here one type of convex parti-
tion which includes the one in Figure 5(b). Namely, a convex
partition isradial if every convex polygon shares a point with
the convex hull of the entire point set.

(a) Nested convex partition. (b) Radial convex partition.

Figure 5: Nested convex partitions are bad approximations to min-
imum convex partitions.

Proposition 5 Given a radial convex partition
S1, S2, . . . , Sk of a set S of points in general position,
we can construct a clockwise-turning sona drawing forS
with winding number at most3k + 1.
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Figure 6: Clockwise-turning
sona drawing for a radial con-
vex partition.

Figure 6 shows an ex-
ample of our approach ap-
plied to a point set simi-
lar to Figure 5. For clarity,
we have reduced the size of
each component in to just
three points, but by using
the construction from Fig-
ure 3, the approach extends
to point sets of arbitrary
sizes. Note that it was nec-
essary to remove one point
from a convex component
to cover the middle face.

5 Minimum-Link Sona Drawings

In a straight-line sona drawing, the curve is a polygonal
chain of line segments calledlinks. In this section, we con-
sider the problem of constructing straight-line sona drawings
on a given point set with the minimum possible number of
links: thesona link numberL(S) is the minimum number
of links of a straight-line sona drawing on the planar point
setS. We consider worst-case bounds on this number:L(n)
is the maximumLS(n) over all point setsS of sizen. We
prove nearly matching upper and lower bounds onL(n).

By the scaling transformation described in Section 3, we
can assume that the points lie arbitrarily close to thex axis.
Call a straight-line sona drawingboxedif the leftmost and
rightmost links are vertical, the leftmost link is arbitrarily
close to the leftmost point, the rightmost link is arbitrarily
close to the rightmost point, both of these links are symmet-
ric about thex axis, and all other links are within the vertical
strip between these two links.

Lemma 6 Givenn points wheren ∈ {2, 5, 7}, there is a
boxed straight-line sona drawings with four links forn = 2,
seven links forn = 5, and eight links forn = 7.

Proof sketch: See Figure 7. 2

(a) 2 points,4 links. (b) 5 points, 7
links.

(c) 7 points,8 links.

Figure 7: Examples of boxed straight-line sona.

Lemma 7 Given constructions for boxed sona drawings on
n1 points usinge1 links and onn2 points usinge2 links, we
can construct a boxed sona drawing onn1 + n2 − 1 given
points withe1 + e2 − 2 links.

Lemma 8 For every positive integern, there is a set ofn
points requiringn + 1 links if n is odd, and requiringn + 2
links if n is even, in any straight-line sona drawing.

Proof sketch: Considern collinear points. 2

Combining Lemmas 6, 7, and 8, we obtain the following
main result of the section:

Theorem 9 Givenn points in the plane, the following num-
ber of links are sufficient and sometimes necessary for a
straight-line sona drawing:

L(n) = 4 for n = 2,
4 ≤ L(n) ≤ 6 for n = 3,
6 ≤ L(n) ≤ 8 for n = 4,

L(n) = n + 2 for n ≡ 0 (mod 4) with n ≥ 8,
n + 1 ≤ L(n) ≤ n + 2 for n ≡ 1 (mod 4) with n ≥ 1,
n + 2 ≤ L(n) ≤ n + 3 for n ≡ 2 (mod 4) with n ≥ 6,

L(n) = n + 1 for n ≡ 3 (mod 4) with n ≥ 7.

6 Grid Sona Drawings

Givenn points in the centers of cells in the square grid, agrid
sona drawingis a sona drawing whose edges are drawn as
polygonal lines along the orthogonal grid lines. Not all point
sets have a grid sona drawing. However, if the points are
“far enough” from each other, then we can always find a grid
sona drawing: loop around each point except the last one,
surround the last point, and return to the starting position. To
quantify “far enough”, consider the following process: start
with an arbitrary set of points in the centers of grid cells, and
then scale the point set by an integers, so that between any
two distinct points there are at leasts horizontal or vertical
grid lines. Our goal is to find grid sona drawings with the
minimum possible scalings. We prove thats = 3 always
suffices, and show some instances wheres = 2 also suffices.
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Proposition 10 Any point set has a (clockwise-turning) grid
sona drawing after scaling by3.

Proposition 11 For any positive integersm andn, them×n
grid of points has a grid sona drawing after scaling by2.

Proof sketch: The construction varies slightly depending on
the parity of the number of rows and columns. All cases
share a common “core” construction, shown in Figure 8.2
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Figure 8: Core construction for grid sona drawing on anm × n
grid of points after scaling by2. Can you fill in the rest? What if
we add one more row and/or column of points?

7 Minimum-Length Sona Drawings

The lengthof a sona drawing is the total arc length of the
underlying curve. In this section, we show that the length of
the minimum-length sona drawing is at least a constant factor
times the TSP tour of the given points, thus settling the open
problem posed in [6, Open Problem 6]. By a matching upper
bound of [6], the two values are thus within constant factors
of each other.

Theorem 12 Every sona drawing has length greater than
TSP/c wherec = π+2

π ≈ 1.63662.

Proof sketch: We use connections between TSP, the nearest-
neighbor graph, and Eulerian tours. 2

8 Open Problems

We highlight some open problems:

Open Problem 1 Is the minimum winding number of a
clockwise-turning sona drawing forn points in convex po-
sition2 or 3, for oddn > 3?

Open Problem 2 Is the minimum winding number of a
clockwise-turning sona drawing forn points in general posi-
tion at most a constant factor times the size of the minimum
convex partition?

Open Problem 3 Are the upper or lower bounds in Theo-
rem 9 on the minimum-link sona drawing tight?

Open Problem 4 Which point sets have grid sona drawings
without any scaling? Do all point sets have grid sona draw-
ings after scaling by2?

Open Problem 5 What is the complexity of finding the
minimum-length sona drawing on a given set of points?
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