1. Give an algorithm to detect whether a given undirected graph contains a cycle. If the graph contains a cycle, then your algorithm should output one. (It should not output all cycles in the graph, just one of them). The running time of your algorithm should be $O(m + n)$ for a graph with n nodes and m edges.

2. Given an undirected graph $G = (V, E)$ and an integer k, find an induced subgraph $H = (U, F)$ of G of maximum size (maximum in terms of the number of vertices) such that all vertices of H have degree at least k, i.e., each vertex in H has at least k neighbors in H.

3. We have a connected graph $G = (V, E)$, and a specific vertex $u \in V$. Suppose we compute a depth-first search tree rooted at u, and obtain a tree T that includes all nodes of G. Suppose we then compute breadth-first search tree rooted at u, and obtain the same tree T. Prove that $G = T$. (In other words, if T is both a depth-first search tree and a breadth-first search tree rooted at u, then G cannot contain any edges that do not belong to T.

4. Prove or disprove: If a directed graph G contains cycles, then the topological sort algorithm done in class produces a vertex ordering that minimizes the number of “bad” edges that are inconsistent with the ordering produced.