Exercise I

Remarks: Solve the following 4 questions. In all algorithm, always explain how and why they work. ALWAYS, analyze the complexity of your algorithms. In all algorithms, always try to get the fastest possible. A correct algorithm with slow running time may not get full credit.

1. **Question 1:** We are given two sorted arrays A and B. All the numbers in $A \cup B$ are pairwise distinct. Write an algorithm to find the median of $A \cup B$. This is the number in the middle of $A \cup B$ (in n is odd the median is smaller than $1/2$ the numbers and larger than $1/2$ the numbers. If n is even there are two medians).

2. **Question 2:** Say that in an unsorted array A, each element is at most 10 places from its sorted position.

3. **Question 3:** Solve the Knapsack problem, if there are only two prices possible.

4. **Question 4:** Let T be a rooted tree $T(V, E, r)$. We say that a subset $A \subseteq V$ is *proper* if there is not some node v and its parent $p(v)$ in A. Give a greedy algorithm to find a proper subset of V of maximum size.