Exam

Remarks: All the graphs here are without self loops and parallel or anti-parallel edges. A network is a directed graph with source s and sink t and capacity $c_e > 0$ on every edge e. In all the algorithms, always explain their correctness and analyze their complexity. The complexity should be as small as possible. A correct algorithm with large complexity, may not get full credit. The number of vertices is denoted by n, and the number of edges by m.

Choose 5 out of the next 6 questions.

Question 1: On all the next questions answer true or false and explain:

1. If there exists at least one s to t path in the network, then there exists a single edge e so that if we increase the capacity of e the max flow will increase
2. A perfect matching is a matching that contains all the vertices. True or false: Every tree has at most one perfect matching,
3. True or false: a minimum weight shortest path is still a minimum weight shortest path if cost 1 is added to every edge
4. If the min-cut algorithm of Karger returns a cut of capacity τ then with high probability the minimum cut of the network has value τ

Question 2: A bipartite graph is d-regular if and only if the degree of every node is exactly d. Show that a d-regular bipartite graph always has a perfect matching (a matching of size $n/2$ that includes all vertices).

Question 3: A network with capacity on the nodes is a directed graph with source s, sink t, capacities over the edges and capacity $c(v)$ for every $v \in V$. It is required that aside from the usual conditions, at most $c(v)$ flow units enter v along the edges of v. The goal is to maximize the flow entering t (t and s have no capacities). Give an algorithm that solves the problem

Question 4: Show that the distance from s to a vertex v can not decrease in the residual graph during a run of the Ford and Fulkerson algorithm (the paths chosen are arbitrary)

Question 5: For a tree T with weights on edges, let $\max(T) = \max_{e \in E} c(e)$. Give an algorithm that finds a tree with minimum $\max(T)$.

Question 6: Say that instead of a single source s there are several sources $s_1, s_2,$ Thus, flow can leave any s_i without any entering flow (according to capacity constrains). The goal is still to respect the $f(e) \leq c(e)$ constrains and to maximize the amount of flow entering t. Give an algorithm for this problem