Probabilistic analysis of k-dimensional packing algorithms

Dawei Hong, Joseph Y-T. Leung *

Department of Computer Science and Engineering, University of Nebraska – Lincoln, Lincoln, NE 68588-0115, USA

Communicated by F.B. Schneider; received 3 June 1993; revised 1 February 1995

Abstract

In the k-dimensional packing problem, we are given a set $I = \{b_1, b_2, \ldots, b_n\}$ of k-dimensional boxes and a k-dimensional box B with unit length in each of the first $k-1$ dimensions and unbounded length in the kth dimension. Each box b_i is represented by a k-tuple $b_i = (x_{i(1)}, \ldots, x_{i(k-1)}, x_{i(k)}) \in (0, 1]^{k-1} \times (0, \infty)$, where $x_{i(j)}$ denotes its length in the jth dimension, $1 \leq j \leq k$. We are asked to find a packing of I into B such that each box is packed orthogonally and oriented in all k dimensions and such that the height in the kth dimension of the packing is minimized. The k-dimensional packing problem is known to be NP-hard for each $k > 1$. In this note, we study the average-case behavior of a class of algorithms, which includes any optimal algorithm and an on-line algorithm. Let A denote an algorithm in this class. Assume that b_1, b_2, \ldots, b_n are independent, identically distributed according to a distribution $F(x_{1(1)}, \ldots, x_{(k-1)}, x_{(k)})$ over $(0, 1]^{k-1} \times (0, \infty)$, and the marginal distribution F_k of $x_{(k)}$ satisfies the property that there is a positive number α at which the moment generating function $M_k(t)$ has a finite value $C_\alpha > 0$. It is shown that for each given $\epsilon > 0$, there is an $N_{\epsilon, F} > 0$ such that for all $n \geq N_{\epsilon, F}$, $\Pr(|A(b_1, \ldots, b_n)/n - \Gamma| > \epsilon) < (2 + C_\alpha)\exp(- (s\alpha/3)^{2/3}n^{1/3})$, where $\Gamma = \lim_{n \to \infty} \mathbb{E}[A(b_1, \ldots, b_n)/n]$ and $A(b_1, \ldots, b_n)$ denotes the height in the kth dimension of the packing of (b_1, \ldots, b_n) produced by A.

Keywords: Probabilistic analysis of algorithms; NP-hard; k-dimensional packing; On-line algorithm

1. Introduction

In the k-dimensional packing problem, we are given a set $I = \{b_1, b_2, \ldots, b_n\}$ of k-dimensional boxes and a k-dimensional box B with unit length in each of the first $k-1$ dimensions and unbounded length in the kth dimension. Each box b_i is represented by the k-tuple $b_i = (x_{i(1)}, \ldots, x_{i(k-1)}, x_{i(k)}) \in (0, 1]^{k-1} \times (0, \infty)$, where $x_{i(j)}$ denotes its length in the jth dimension, $1 \leq i \leq k$. Our goal is to pack I into B such that each box is packed orthogonally and oriented in all k dimensions and such that the height in the kth dimension of the packing is minimized. The k-dimensional packing problem is known to be NP-hard for each $k > 1$. In this note, we study the average-case behavior of a class of algorithms, which includes

* Research supported in part by the ONR grant N00014-91-J-1383 and in part by the CCIS at UNL.
* Corresponding author. Email: jyl@cse.unl.edu.
any optimal algorithm and an on-line algorithm. Throughout this note, we let A denote an algorithm in this class and $A(b_1, \ldots, b_n)$ denote the height in the kth dimension of the packing of (b_1, b_2, \ldots, b_n) produced by A. Furthermore, we let OPT denote an optimal algorithm and $OPT(b_1, \ldots, b_n)$ denote the height in the kth dimension of an optimal packing of (b_1, b_2, \ldots, b_n).

The k-dimensional packing problem models many optimization problems in computer science and operations research. For example, the 2-dimensional packing problem has been used to model job scheduling in a multiprogrammed computer system [4]. In this application, each job is represented by a box, where the first and second dimensions of the box represent the memory requirement and time taken by the job, respectively. Worst-case analysis of fast approximation algorithms for 2-dimensional packing is conducted in [2,4], while in [6] its average-case behavior is considered under the assumption that $x_1^{(1)}, \ldots, x_n^{(1)}, x_1^{(2)}, \ldots, x_n^{(2)}$ are independent, uniform random samples from $[0,1]$. Another example is the 3-dimensional packing problem, which was recently introduced as a model of job scheduling in partitionable mesh connected systems (PMCS) [11]. In this problem, the bottom of the box B represents the PMCS and the unbounded height represents the time dimension. Each box $b_i = (x_i^{(1)}, x_i^{(2)}, x_i^{(3)})$ represents a job, where $x_i^{(1)}$ represents the size of a submesh required by the job and $x_i^{(3)}$ represents its execution time. A fast approximation algorithm for the 3-dimensional packing problem was proposed in [11] and its worst-case performance analyzed. The earliest work in probabilistic analysis of k-dimensional packing is due to Karp et al. [9]; other works can be found in [5].

For the 2-dimensional packing problem, Karp et al. [9] have shown that

\[
\lim_{n \to \infty} \frac{E[OPT(b_1, \ldots, b_n)]}{n} = \frac{1}{4}.
\]

(1.1)

Recently, there is a renewed interest [3,6] in the Next Fit Shelf (NFS) algorithm due to Baker and Schwarz [2]. The generalized version of NFS, as described in [3,6], works as follows: First, design a set $R = \{r_j | j \in \mathbb{Z} \text{ and } r_j < r_{j+1}\}$ of shelf heights. Then, the boxes b_1, \ldots, b_n are packed successively into the box B, one after the other. In the course of packing the boxes, B can be viewed as a sequence of shelves with heights drawn from R; initially, B consists of no shelf. Suppose we are packing the box $b_i = (x_i^{(1)}, x_i^{(2)})$. Let j be the smallest index such that $x_i^{(2)} \leq r_j$. If b_i can be packed into the topmost shelf with height r_j, then pack as far left into this shelf as possible; otherwise, pack into the leftmost position of a newly created shelf with height r_j. It is clear that NFS is an on-line algorithm. In [3,6], R is chosen to be the set $\{r_j = j/l | j = 1, \ldots, l\}$ for some positive integer l. For this choice of R, it is clear that the difference between any two consecutive shelf heights is bounded above by the constant $\lambda = 1/l$. With this choice of R, it was shown [3,6] that if b_1, \ldots, b_n is a random sample from the uniform distribution over $(0, 1)^2$, then

\[
\lim_{n \to \infty} \frac{E[NFS(b_1, \ldots, b_n)]}{n} = \frac{1}{3}.\frac{1}{3l}.
\]

(1.2)

Combining (1.1) and (1.2), we have

\[
\lim_{n \to \infty} \frac{E[OPT(b_1, \ldots, b_n)]}{E[NFS(b_1, \ldots, b_n)]} = \frac{3}{4 + 4l^{-1}}.
\]

(1.3)

In the probability model considered here, we assume that b_1, b_2, \ldots, b_n are independent, identically distributed according to a distribution $F(x^{(1)}, \ldots, x^{(k)})$ over $(0, 1)^{k-1} \times (0, \infty)$. Furthermore, we assume
that the marginal distribution F_k of $x^{(k)}$ satisfies the property that there is a positive number α at which the moment generating function $M_{F_k}(t)$ has a finite value $C_\alpha > 0$, i.e.,

$$\int_{(0,\infty)} e^{\alpha x^{(k)}} \, dF_k = C_\alpha.$$ \hspace{1cm} (1.4)

No further regularity restriction is made on F, unless stated otherwise. It is clear that most of the commonly used distributions, such as uniform and exponential distributions, do meet (1.4).

In the next section, we will define a class of algorithms, which includes both OPT and NFS. We then show that for each given $s > 0$, there is an $N_{s,F} > 0$ such that for all $n \geq N_{s,F}$,

$$\Pr\left(\left| A\left(b_1, \ldots, b_n\right) / n - \Gamma \right| > s \right) < \left(2 + C_\alpha\right) \exp\left(-\left(\frac{s\alpha}{3}\right)^{2/3} n^{1/3}\right),$$

where $\Gamma = \lim_{n \to \infty} E[A(b_1, \ldots, b_n)]/n$ and $A(b_1, \ldots, b_n)$ denotes the height in the kth dimension of the packing obtained for (b_1, \ldots, b_n) by an algorithm in this class. As a corollary of our result and by (1.1) and (1.2), we can show that for each $0.3 > s > 0$ and large enough n,

$$\Pr\left(\frac{3 - 12s}{4 + 4l^{-1} + 12s} \leq \frac{\text{OPT}(b_1, \ldots, b_n)}{\text{NFS}(b_1, \ldots, b_n)} \leq \frac{3 + 12s}{4 + 4l^{-1} - 12s} \right) \geq 1 - 4 \exp\left(-(s^2n)/3\right).$$ \hspace{1cm} (1.5)

The above probabilistic bound provides more information about the average-case behavior of NFS than (1.3) does, since (1.3) merely says that $3/(4 + 4l^{-1})$ is the asymptotic ratio of $E[\text{OPT}(b_1, \ldots, b_n)]$ over $E[\text{NFS}(b_1, \ldots, b_n)]$, while (1.5) indicates that this ratio is nearly guaranteed with exponentially high probability for every instance (b_1, \ldots, b_n).

2. Large deviation bound

For any algorithm A, we may view $A(b_1, \ldots, b_n)$ as an n-ary function from D^n into \mathbb{R}^+, where $D = (0, 1]^{k-1} \times (0, \infty)$ and \mathbb{R}^+ is the set of positive real numbers. Consider the class of algorithms that satisfy the following three properties:

(P1) For any $n,m \geq 1$ and $b_1, \ldots, b_n, b_{n+1}, \ldots, b_{n+m},$

$$A(b_1, \ldots, b_n) + A(b_{n+1}, \ldots, b_{n+m}) \geq A(b_1, \ldots, b_n, b_{n+1}, \ldots, b_{n+m}).$$

(P2) There is a constant $\lambda > 0$ such that for any $1 \leq i \leq n$, $b_i = (x^{(1)}_i, \ldots, x^{(k-1)}_i, x^{(k)}_i)$ and $\tilde{b}_i = (\tilde{x}^{(1)}_i, \ldots, \tilde{x}^{(k-1)}_i, \tilde{x}^{(k)}_i)$,

$$\left| A\left(b_1, \ldots, b_{i-1}, b_i, b_{i+1}, \ldots, b_n\right) - A\left(b_1, \ldots, b_{i-1}, \tilde{b}_i, b_{i+1}, \ldots, b_n\right) \right| \leq \max\{x^{(k)}_i + \lambda, \tilde{x}^{(k)}_i + \lambda\}.$$

(P3) For any $(b_1, \ldots, b_n) \in D^n$, $A(b_1, \ldots, b_n) \leq \sum_{i=1}^{n} x^{(k)}_i + n\lambda$, where λ is the constant as defined in (P2).

It is clear that OPT satisfies the above three properties with $\lambda = 0$. It is also easy to see that NFS satisfies (P1). To see that NFS satisfies (P2), let $b_i = (x^{(1)}_i, x^{(2)}_i)$ and $\tilde{b}_i = (\tilde{x}^{(1)}_i, \tilde{x}^{(2)}_i)$ be packed into shelves with heights r_j and \tilde{r}_j, respectively. By the nature of NFS,

$$\left| \text{NFS}(b_1, \ldots, b_{i-1}, b_i, b_{i+1}, \ldots, b_n) - \text{NFS}(b_1, \ldots, b_{i-1}, \tilde{b}_i, b_{i+1}, \ldots, b_n) \right| \leq \max\{r_j, \tilde{r}_j\}.$$
Since the difference between two consecutive shelf heights is bounded above by a constant, say \(\lambda \), we have \(r_j - x^{(2)}_j < \lambda \) and \(\bar{r}_j - \bar{x}^{(2)}_j \leq \lambda \). Thus, NFS satisfies (P2). Finally, it is easy to see that NFS satisfies (P3).

By the theory of subadditive processes (see p. 186 of [10]), (P1) implies that there is a constant to which \(A(b_1, \ldots, b_n)/n \) converges almost surely, as \(n \to \infty \). By (P3) and the assumption that the moment generating function \(M_{f_i}(t) \) has a finite value at \(\alpha > 0 \), \(E[A(b_1, \ldots, b_n)/n] \) converges to this constant too. (The proof is an application of Lebesgue’s dominated convergence theorem, see [7]). Let this constant be denoted by \(\Gamma \).

Our proof of the probabilistic concentration property of \(A \) is an extension of the basic ideas by Rhee and Talagrand, who first introduced martingale inequalities to the analysis of the classical one-dimensional bin packing problem, the traveling salesman problem, as well as other problems [12, 13]. In this note we define a martingale as in [8]. Let \(\{X_i | i = 0, 1, \ldots, n\} \) and \(\{Y_i | i = 0, 1, \ldots, n\} \) be two sequences of random variables defined on a probability space. We say that \(\{X_i | i = 0, 1, \ldots, n\} \) is a martingale with respect to \(\{Y_i | i = 0, 1, \ldots, n\} \) if for each \(i = 0, 1, \ldots, n \), \(E[X_i | Y_0, \ldots, Y_i] = X_i \).

We need a martingale inequality due to Azuma [11].

Azuma Lemma. Suppose the sequence \(X_0, X_1, \ldots, X_n \) is a martingale. Let \(c_i = \sup |X_i - X_{i-1}|, i = 1, \ldots, n, \) and assume that \(\Sigma_{i=1}^n c_i^2 > 0 \). Then, for all \(t > 0 \),

\[
Pr(|X_n - X_0| > t) \leq 2e^{t^2/2(\Sigma_{i=1}^n c_i^2)}.
\]

Note that \(A(b_1, \ldots, b_n) \) is Turing-computable and hence, as an \(n \)-ary function defined on \(D^n \), it is Borel-measurable. Now we use \(A(b_1, \ldots, b_n) \) to define a martingale. The idea behind the definition is quite simple. In the proof of the theorem below, we seek an estimation of \(Pr(|A(b_1, \ldots, b_n) - E[A(b_1, \ldots, b_n)]| > t) \). Let \(X_n = A(b_1, \ldots, b_n) \) and \(X_0 = E[A(b_1, \ldots, b_n)] \). Then, we create \(X_1, \ldots, X_{n-1} \) along which \(E[A(b_1, \ldots, b_n)] \) gradually becomes \(A(b_1, \ldots, b_n) \). The most natural way to do this is to let \(X_i \) be as follows: For each \(i, 1 \leq i \leq n \), \(X_i \) is obtained by taking the conditional expected value of \(A(b_1, \ldots, b_n) \) for each of those subsets of \(D^n \), where two elements in \(D^n \) are in the same subset if and only if they agree on \(b_i \). This suggests that \(Y_i \) be chosen in the following way: Let \(Y_0 \) be a constant function from \(D^n \) into \(\mathbb{R}^+ \), and for each \(i, 1 \leq i \leq n, Y_i \) is a Borel-measurable function from \(D^n \) into \(\mathbb{R}^+ \) that maps any two elements in \(D^n \) to the same number in \(\mathbb{R}^+ \) if and only if these two elements agree on \(b_i \). With this definition of \(Y_i \)'s, we define for each \(i, 0 \leq i \leq n, \)

\[
X_i = E[A(b_1, \ldots, b_n) | Y_0, \ldots, Y_i].
\]

It is easy to see that \(\{X_i | i = 0, 1, \ldots, n\} \) forms a martingale with respect to \(\{Y_i | i = 0, 1, \ldots, n\} \), where \(X_0 = E[A(b_1, \ldots, b_n)] \) and \(X_n = A(b_1, \ldots, b_n) \). This martingale enables us to estimate \(|X_i - X_{i-1}| \) easily. Indeed, since the \(b_i \)'s are independent, the difference between \(X_i \) and \(X_{i-1} \) can only be due to \(b_i \). By (P2), we have

\[
|X_i - X_{i-1}| \leq \sup \{x^{(k)}_i + \lambda | b_i = (x^{(1)}_i, \ldots, x^{(k)}_i, x^{(k)}_i) \}.
\]

Thus, if we could control \(x^{(k)}_i \) in \(b_i \) for each \(i, 1 \leq i \leq n, \) the desired result would follow from the Azuma Lemma. An interesting case is when \(x^{(k)} \) is bounded.

Proposition 1. Suppose that the marginal distribution \(F_k \) has a bounded support within \((0, U] \); i.e., \(x^{(k)} \in (0, U] \). Then, for each \(s > 0 \), there is an \(N_{s,F} > 0 \) such that for all \(n \geq N_{s,F}, \)

\[
Pr\left(\left| \frac{A(b_1, \ldots, b_n)}{n} - \Gamma \right| > s \right) < 2 \exp\left(-\frac{(s^2n)}{3U^2}\right).
\]
Proof. Define a martingale as in (2.1). Then we have \(|X_i - X_{i-1}| \leq U\). The result can be derived from the Azuma Lemma. □

Now we consider the case where \(x^{(k)}\) is unbounded. The following is the main result of this note.

Theorem 2. Suppose that the marginal distribution \(F_k\) of \(x^{(k)}\) satisfies the property (1.4); i.e., there is a positive number \(\alpha\) at which the moment generating function \(M_{F_k}(t)\) has a finite value \(C_\alpha > 0\). Then, for each given \(\varepsilon > 0\), there is an \(N_{\varepsilon,F} > 0\) such that for all \(n > N_{\varepsilon,F}\),

\[
\Pr\left(\left|\frac{A(b_1, \ldots, b_n)}{n} - \Gamma\right| > \varepsilon\right) < (2 + C_\alpha) \exp\left(-\left(\frac{s\alpha}{3}\right)^{2/3} n^{1/3}\right).
\tag{2.4}
\]

Proof. To bound \(x_i^{(k)}\) so that the Azuma Lemma can be applied, we define \(f(n)\), for each \(n\), as the largest real root of the equation

\[
\xi(\xi + \lambda) - \frac{\log n}{\alpha}(\xi + \lambda)^2 - \frac{s^2n}{3\alpha} = 0.
\]

Then we transform each \(b_i = (x_i^{(1)}, \ldots, x_i^{(k-1)}, x_i^{(k)})\) into \(\bar{b}_i = (x_i^{(1)}, \ldots, x_i^{(k-1)}, \bar{x}_i^{(k)})\) as follows. For each \(b_i = (x_i^{(1)}, \ldots, x_i^{(k-1)}, x_i^{(k)})\), we define \(\bar{b}_i\) as

\[
\bar{b}_i = \begin{cases}
 b_i, & \text{if } x_i^{(k)} \leq f(n), \\
 (x_i^{(1)}, \ldots, x_i^{(k-1)}, f(n)), & \text{if } x_i^{(k)} > f(n).
\end{cases}
\]

Note that \(f(n)\) is chosen so that \(s^2n/(3f(n) + \lambda)^2 = \alpha f(n) - \log n\), which will enable us to obtain a good bound in (2.4). Moreover, it is easy to see that

\[
\lim_{n \to \infty} \frac{f(n)}{n^{1/3}} = \frac{s^{2/3}}{(3\alpha)^{1/3}}. \tag{2.5}
\]

The difference between \(b_i\) and \(\bar{b}_i\) depends on whether \(x_i^{(k)} > f(n)\) or not. By the assumption in (1.4), we have

\[
\Pr(b_i \neq \bar{b}_i) = \int_{(f(n),\infty)} dF_k \leq \frac{C_\alpha}{e^{\alpha f(n)}}. \tag{2.6}
\]

Furthermore, (2.6) and the independence of the \(b_i\)'s imply that

\[
\Pr(A(b_1, \ldots, b_n) = A(\bar{b}_1, \ldots, \bar{b}_n)) \geq \left(1 - \frac{C_\alpha}{e^{\alpha f(n)}}\right)^n.
\]

From (2.5), it is not difficult to verify that for large enough \(n\), say for all \(n > N_1\),

\[
\left(1 - \frac{C_\alpha}{e^{\alpha f(n)}}\right)^n > 1 - \frac{C_\alpha n}{e^{\alpha f(n)}}.
\]

Thus, for all \(n > N_1\),

\[
\Pr(A(b_1, \ldots, b_n) = A(\bar{b}_1, \ldots, \bar{b}_n)) > 1 - \frac{C_\alpha n}{e^{\alpha f(n)}}. \tag{2.7}
\]
Using the \bar{b}_i's, we define a martingale as in (2.1). By the definition of \bar{b}_i, it is clear from (2.2) that for $i = 1, \ldots, n$, $|X_i - X_{i-1}| \leq f(n) + \lambda$. Letting $t = \sqrt{6} \ln n / 3$ in the Azuma Lemma, we have for all $s > 0$,

$$
\Pr\left(\left| \frac{A(\bar{b}_1, \ldots, \bar{b}_n)}{n} - \mathbb{E}\left[A(\bar{b}_1, \ldots, \bar{b}_n) \right] \right| > \frac{\sqrt{6} s}{3} \right) \leq 2e^{-s^2 n / 3(f(n) + \lambda)^2}.
$$

Combining (2.7) and (2.8), we have

$$
\Pr\left(\left| \frac{A(b_1, \ldots, b_n)}{n} - \mathbb{E}\left[A(\bar{b}_1, \ldots, \bar{b}_n) \right] \right| > \frac{\sqrt{6} s}{3} \right) \leq 2e^{-s^2 n / 3(f(n) + \lambda)^2} + C_{\alpha} e^{-\alpha f(n) - \log n}.
$$

As mentioned before, $f(n)$ was chosen so that $s^2 n / 3(f(n) + \lambda)^2 = \alpha f(n) - \log n$. Define the function $g(n)$ as follows: $g(n) = s^2 n / 3(f(n) + \lambda)^2 = \alpha f(n) - \log n$. From (2.5), we have $\lim_{n \to \infty} g(n) / n^{1/3} = (s\alpha)^{2/3} / 3^{1/3}$. Thus, when n is large enough, say for all $n > N_2$, such that $g(n) / n^{1/3} > (s\alpha)^{2/3} / 3^{2/3}$, we have

$$
2e^{-s^2 n / 3(f(n) + \lambda)^2} + C_{\alpha} e^{-\alpha f(n) - \log n} = (2 + C_{\alpha}) e^{-g(n)} < (2 + C_{\alpha}) \exp \left(-\left(\frac{s\alpha}{3} \right)^{2/3} n^{1/3} \right).
$$

From the above inequality and (2.9), we have for all $n > \max\{N_1, N_2\}$,

$$
\Pr\left(\left| \frac{A(b_1, \ldots, b_n)}{n} - \mathbb{E}\left[A(\bar{b}_1, \ldots, \bar{b}_n) \right] \right| > \frac{\sqrt{6} s}{3} \right) < (2 + C_{\alpha}) \exp \left(-\left(\frac{s\alpha}{3} \right)^{2/3} n^{1/3} \right).
$$

So far, we have shown that $A(b_1, \ldots, b_n) / n$ concentrates on $\mathbb{E}[A(\bar{b}_1, \ldots, \bar{b}_n)] / n$ with high probability. To complete the proof, all we need show is that $\lim_{n \to \infty} \mathbb{E}[A(\bar{b}_1, \ldots, \bar{b}_n)] / n = \Gamma$. To do this, we consider (2.7) again, which gives a relationship between $A(b_1, \ldots, b_n)$ and $A(\bar{b}_1, \ldots, \bar{b}_n)$. From (2.7), we have for all $n > N_1$,

$$
\Pr\left(\bigcup_{j = n}^{\infty} \left\{ A(b_1, \ldots, b_j) \neq A(\bar{b}_1, \ldots, \bar{b}_j) \right\} \right) \leq C_{\alpha} \sum_{j = n}^{\infty} \frac{j}{e^{\alpha f(j)}},
$$

Combining this inequality, (2.5), the Borel–Cantelli Lemma (see [7]), and the fact that $\lim_{n \to \infty} A(b_1, \ldots, b_n) / n = \Gamma$ almost surely, we have

$$
\lim_{n \to \infty} \frac{A(\bar{b}_1, \ldots, \bar{b}_n)}{n} = \Gamma,
$$

almost surely. It is clear that for any n and $\bar{b}_1, \ldots, \bar{b}_n$, $A(\bar{b}_1, \ldots, \bar{b}_n) / n \leq \sum_{k = 1}^{n} x(k) / n + \lambda$. Noting that $\lim_{n \to \infty} \sum_{k = 1}^{n} x(k) / n - \mathbb{E}[x^{(k)}] < \infty$ almost surely, with (2.11) and Lebesgue's dominated convergence theorem (see [7]), we have $\lim_{n \to \infty} \mathbb{E}[A(\bar{b}_1, \ldots, \bar{b}_n)] / n = \Gamma$. Therefore, for $(1 - \sqrt{6}/3)s > 0$, there is an $N_3 > 0$ such that for all $n > N_3$,

$$
\left| \mathbb{E}\left[\frac{A(\bar{b}_1, \ldots, \bar{b}_n)}{n} \right] - \Gamma \right| < \left(1 - \frac{\sqrt{6}}{3} \right) s.
$$

Letting $N_{s,F} = \max\{N_1, N_2, N_3\}$, the theorem follows from the above inequality and (2.10). \(\square\)
Corollary 3. Suppose A is an algorithm that satisfies (P1)–(P3). Let $\Gamma_{OPT} = \lim_{n \to \infty} E[OPT(b_1, \ldots, b_n)]/n$ and $\Gamma_A = \lim_{n \to \infty} E[A(b_1, \ldots, b_n)]/n$. For each $\Gamma_A > s > 0$, there is an $N_{s,F} > 0$ such that for all $n \geq N_{s,F}$,

$$\Pr\left(\frac{\Gamma_{OPT} - s}{\Gamma_A + s} \leq \frac{OPT(b_1, \ldots, b_n)}{A(b_1, \ldots, b_n)} \leq \frac{\Gamma_{OPT} + s}{\Gamma_A - s}\right)$$

$$\geq 1 - 2(2 + C_n) \exp\left(-\left(\frac{s \alpha}{3}\right)^{2/3} n^{1/3}\right).$$

(2.12)

Moreover, if the marginal distribution F_k has a bounded support within $(0, U]$, then

$$\Pr\left(\frac{\Gamma_{OPT} - s}{\Gamma_A + s} \leq \frac{OPT(b_1, \ldots, b_n)}{A(b_1, \ldots, b_n)} \leq \frac{\Gamma_{OPT} + s}{\Gamma_A - s}\right)$$

$$\geq 1 - 4 \exp(- (s^2 n)/(3U^2)).$$

(2.13)

Consequently, almost surely

$$\lim_{n \to \infty} \frac{OPT(b_1, \ldots, b_n)}{A(b_1, \ldots, b_n)} = \frac{\Gamma_{OPT}}{\Gamma_A}.$$

(2.14)

Proof. From (2.4) and (2.3), we have (2.12) and (2.13) by a straightforward calculation. (2.14) follows from (2.12), (2.13) and the Borel–Cantelli Lemma (see [7]).

Taking NFS as A and substituting $1/4$ and $1/3 + 1/3l$ for Γ_{OPT} and Γ_{NFS}, respectively, into (2.13), we obtain (1.5) immediately.

3. Concluding remarks

In this note, we have shown a probabilistic concentration property of a class of k-dimensional packing algorithms. This class includes any optimal algorithm and an on-line algorithm that has been studied in the literature. Our results provide more information about the average-case behavior of these algorithms than those found in the literature. As can be seen from the proofs, our results are also applicable to the packing of k-dimensional, irregular shaped objects into a k-dimensional box.

Acknowledgment

We gratefully acknowledge the suggestions by the referees, which have led to a major improvement in the presentation over our earlier version.

References