New design

Acta Crystallographica Section C is being redesigned for 2000 and this will affect the style, but not the content, of your paper i.e. different column sizes may change line endings.

In order not to delay your proofs they have been sent to you in the old format. If you have any queries or comments regarding this or any other matter relating to your proofs please do not hesitate to get in touch.

Rb₄Zr₃Te₁₆, a one-dimensional zirconium telluride synthesized from molten salt

ASHLEY B. ANDERSON, RU-JI WANG AND JING LI

Synopsis

The crystal structure of Rb₄Zr₃Te₁₆ consists of infinite one-dimensional chains of [Zr₃Te₁₆]₄⁻ separated from each other by Rb⁺ cations. Within these chains, each Zr atom is surrounded by eight Te atoms to give a distorted bicapped trigonal prism polyhedron.

Subject index

The following terms will be used to index your paper. Authors wishing to recommend additional index entries should give these below.

Tetrarubidiumtrizirconiumhexadecatelluride

Inorganic formula index

Note that for coordination complexes, the ligands are listed in alphabetic order. This means that the indexing term may differ from the IUPAC formula used elsewhere in the paper.

Rb₄Te₁₆Zr₃
Acta Cryst. (1999). C55, 000–000

Rb₄Zr₃Te₁₆, a one-dimensional zirconium telluride synthesized from molten salt

ASHLEY B. ANDERSON,a RU-JI WANGb AND JING LIa

aDepartment of Chemistry, Rutgers University, Camden, NJ 08102, USA, and bDepartment of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China.
E-mail: wangfj@sam.chem.tsinghua.edu.cn

(Received 27 August 1999; accepted 17 September 1999)

Abstract
A new ternary metal telluride, tetrarubidiumtrizirconiumhexadecatelluride, Rb₄Zr₃Te₁₆, has been synthesized through reactions at 698 K using elemental Zr and Rb₂Te/Te melt as a reactive flux, and characterized by single-crystal X-ray diffraction. Although the structure of this compound is very similar to its analogue, Cs₄Zr₃Te₁₆, they crystallize in different space groups, the former in C_{2h}^6-C2/c and the latter in $C_{2h}^5-P2_1/n$. Both compounds consist of infinite one-dimensional chains of $[Zr_3Te_{16}]^{8-}$ separated from each other by Rb⁺ or Cs⁺ cations. Within the chain, each Zr atom is surrounded by eight Te atoms to give a distorted bicapped trigonal prism polyhedron. There are two unambiguous Te—Te single bonds of 2.758 (2) and 2.765 (2) Å and four longer Te···Te interatomic distances in the range of 2.928–3.045 Å that indicate weak interactions between the adjacent Te atoms. Because of the wide range of Te···Te interactions, simple formalisms cannot be used to describe the bonding within the chain.

Comment
The reactive flux technique has proved to be an effective method of preparing new ternary polychalcogenides. A series of compounds with the general formula $A_xM_yQ_z$ (A = alkali metal, M = Ti, Zr or Hf, and Q = S, Se or Te) have been reported, such as K₄Ti₃S₁₄ (Sunshine et al., 1987), Na₂Ti₂Se₈ (Kang & Ibers, 1988), K₄M₄Te₁₇ (M = Zr or Hf) (Keane & Ibers, 1991) and Cs₄Zr₃Te₁₆ (Cody & Ibers, 1994). A survey of the reactions of alkali-metal polychalcogenide molten salts to yield new materials with Ti, Cu, Au, Hg and Sn is given by Kanatzidis (1990). Although in general substitutions of elements in the same group lead to isostructural compounds, it is found that substitutions in ternary or quaternary chalcogenides containing group IV metals do not just involve simple replacement of one atom for another. For example, substitution of Na for K in the quaternary $A/Cu/Zr/Q$ (A = alkali metal and Q = S, Se or Te) system (Mansuetto et al., 1992, 1993) results
in subtle differences in structure, while substitution of Cs for K in the ternary system $A/M/Te$ (A = alkali metal and M = Zr or Hf) even leads to a change in composition from $K_4M_3Te_{17}$ (M = Zr or Hf; Keane & Ibers, 1991) to $Cs_4Zr_3Te_{16}$ (Cody & Ibers, 1994). In the present work, the substitution of Rb for Cs in the above-mentioned ternary system gives the title new compound, $Rb_4Zr_3Te_{16}$, with the same composition but a different space group, $C_{2h}-C2/c$.

As shown in Fig. 1, the crystal structure of the title compound is very similar to that of $Cs_4Zr_3Te_{16}$ (space group $C_{2h}-P2_1/n$). Both crystals have similar cell parameters and contain one-dimensional Zr/Te chains extended along the a direction and separated by alkali metal cations. The M/Te chains of $K_4Hf_3Te_{17}$ (Keane & Ibers, 1991), $Cs_4Zr_3Te_{16}$ (Cody & Ibers, 1994) and $Rb_4Zr_3Te_{16}$ are compared in Fig. 2. With the higher symmetry, there are only two crystallographically unique Zr atoms in $Rb_4Zr_3Te_{16}$. One of them, Zr2, is located on a twofold axis (Wyckoff position 4e) and the other, Zr1, on a general position. Each Zr atom is eight-coordinate and at the center of a bicapped trigonal prism of Te atoms. The Zr—Te bond lengths are in the range 2.890 (2) to 3.079 (2) Å (Table 1), which are comparable with those found in $Cs_4Zr_3Te_{16}$ (Cody & Ibers, 1994). Each coordination polyhedron of a Zr atom shares opposite triangular faces with the adjacent Zr polyhedron to form a one-dimensional chain. Zr1 is bridged to Zr2 through atoms Te1, Te3$^\prime$ and Te5, while Zr1 is bridged to Zr1ii through atoms Te7, Te7ii and Te8ii [symmetry codes: (i) $\frac{1}{2}-x$, $\frac{1}{2}+y$, $\frac{1}{2}-z$; (ii) $1-x$, y, $\frac{1}{2}+z$]. A Zr atom coordinated by eight Te atoms in a bicapped trigonal prism has been found not only in $A/Al/Te$ (A = alkali metal) ternary systems but also in Zr/Te binary compounds, such as $ZrTe_3$ (Furuseth & Fjellveg, 1991) and ZrTe5 (Furuseth et al., 1973).

FIGS. 1 and 2

As is well known, the tellurides have a greater propensity than do the selenides or sulfides to exhibit $Q-Q$ interactions of intermediate-strength between a $Q-Q$ single bond and a Q^2 van der Waals type interaction (about 2.76 and 4.10 Å for Te, respectively; Shannon, 1976). While an arbitrary maximum for a Te—Te single bond of 2.94 Å gives $[Hf_2(Te_2)(Te_2)]^{3−}$ for the Hf/Te chain in $K_4Hf_3Te_{17}$, where each Hf is in the +4 oxidation state, it is somewhat difficult to describe the Te—Te interactions in the Zr/Te chains of $A_4Zr_3Te_{16}$ (A = Cs and Rb) and to arrive at a reasonable formal oxidation state assignment for the elements. For Rb$_4$Zr$_3$Te$_{16}$, there are two unambiguous Te—Te single bonds with bond lengths of 2.758 (2) and 2.765 (2) Å and four somewhat longer Te—Te distances in the range of 2.928–3.045 Å, which indicates some weak interaction between adjacent Te atoms. The Te—
Te single bonds are shown in Fig. 2 as solid lines and other longer Te–Te interactions of 3.2 Å or less are shown as broken lines.

The obvious differences between the structures of Rb$_4$Zr$_3$Te$_{16}$ and Cs$_4$Zr$_3$Te$_{16}$ (Cody & Ibers, 1994) are the coordination environments of the cations. Two unique Rb$^+$ cations in the former exhibit coordination numbers 12 (Rb1) and 11 (Rb2), with Rb–Te distances from 3.614 (2) to 4.316 (3) Å, while the four Cs$^+$ cations in the latter exhibit coordination numbers 12, 11, 11 and 9, with Cs–Te distances ranging from 3.629 to 4.456 Å (Cody & Ibers, 1994).

Experimental

Rb$_2$Te was prepared by reactions of rubidium metal (99.5%; Aldrich Chemical Company) and elemental tellurium (99.8%; Strem Chemicals, Inc.) in a 2:1 ratio in liquid ammonia. Rb$_2$Te (0.0746 g, 0.25 mmol), Zr (98%; Aldrich Chemical Company; 0.0228 g, 0.25 mmol) and Te (0.1595 g, 1.25 mmol) were weighed in an inert argon-filled glove box. After thorough mixing the reactants were transferred to a thin-walled Pyrex reaction tube (9 mm outside diameter). The sample was immediately sealed under a vacuum of approximately 10$^{-3}$ torr (1 torr = 133.32 Pa). The reaction vessel was then placed in a furnace and brought up to 698 K within 8 h. After heating at 698 K for 3 d, the container was slowly cooled to 423 K (2 K h$^{-1}$) followed by natural cooling to room temperature. Upon removal from the furnace, the sample was treated by an isolation procedure. The reaction mixture consisted of the final products embedded in the excess alkali-metal polychalcogenide melt. The remaining flux was removed after several washes with N,N-dimethylformamide in a nitrogen atmosphere. The sample was then washed twice with 95% ethanol and dried with diethyl ether. Black prism-like crystals were isolated after this procedure. Microprobe analysis was performed on selected single crystals using a Jeol JXA-8600 Superprobe and gave an approximate elemental ratio of Rb, Zr and Te in agreement with the crystal data.

Crystal data

Rb$_4$Zr$_3$Te$_{16}$
M_r = 2657.14
Monoclinic
$C2/c$

a = 11.982 (2) Å
b = 18.613 (4) Å
c = 15.078 (3) Å
β = 102.79 (3)$^\circ$
V = 3279.3 (11) Å3
Z = 4
D_r = 5.382 Mg m$^{-3}$
D_m not measured

Mo Kα radiation
λ = 0.71073 Å
Cell parameters from 25 reflections
θ = 7.6–12.5$^\circ$
μ = 20.781 mm$^{-1}$
T = 293 (2) K
Prism
0.12 × 0.10 × 0.10 mm
Black

Crystal data

Rb$_4$Zr$_3$Te$_{16}$
M_r = 2657.14
Monoclinic
$C2/c$

a = 11.982 (2) Å
b = 18.613 (4) Å
c = 15.078 (3) Å
β = 102.79 (3)$^\circ$
V = 3279.3 (11) Å3
Z = 4
D_r = 5.382 Mg m$^{-3}$
D_m not measured

Mo Kα radiation
λ = 0.71073 Å
Cell parameters from 25 reflections
θ = 7.6–12.5$^\circ$
μ = 20.781 mm$^{-1}$
T = 293 (2) K
Prism
0.12 × 0.10 × 0.10 mm
Black
Data collection

Enraf–Nonius CAD-4 diffractometer
ω-scan
Absorption correction: ψ-scan (North et al. 1968)

 Tmin = 0.094, Tmax = 0.126
2991 measured reflections
2874 independent reflections
2335 reflections with I > 2σ(I)

Refinement

Refinement on F2
R(F) = 0.041
wR(F2) = 0.086
S = 1.940
2874 reflections
106 parameters

w = 1/[σ2(F2) + (0.001P)2 + 5P]
where P = (F2 + 2F2)/3

(Δ/σ)max < 0.001

Table 1. Selected geometric parameters (Å, °)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr1—Te6</td>
<td>2.8895 (18)</td>
<td>Rb1—Te2vi</td>
</tr>
<tr>
<td>Zr1—Te3ii</td>
<td>2.9528 (19)</td>
<td>Rb1—Te7vi</td>
</tr>
<tr>
<td>Zr1—Te7ii</td>
<td>2.9420 (17)</td>
<td>Rb1—Te1vii</td>
</tr>
<tr>
<td>Zr1—Te8ii</td>
<td>2.9547 (18)</td>
<td>Rb1—Te5v</td>
</tr>
<tr>
<td>Zr1—Te4ii</td>
<td>2.9819 (18)</td>
<td>Rb1—Te8vii</td>
</tr>
<tr>
<td>Zr1—Te5</td>
<td>2.9861 (17)</td>
<td>Rb1—Te4vii</td>
</tr>
<tr>
<td>Zr1—Te7</td>
<td>3.012 (2)</td>
<td>Rb1—Te6viii</td>
</tr>
<tr>
<td>Zr1—Te1</td>
<td>3.0794 (17)</td>
<td>Rb1—Te5vii</td>
</tr>
<tr>
<td>Zr2—Te1</td>
<td>2.9326 (15)</td>
<td>Rb2—Te8vi</td>
</tr>
<tr>
<td>Zr2—Te2</td>
<td>2.9422 (13)</td>
<td>Rb2—Te8vii</td>
</tr>
<tr>
<td>Zr2—Te3</td>
<td>2.9599 (14)</td>
<td>Rb2—Te7vii</td>
</tr>
<tr>
<td>Zr2—Te5</td>
<td>2.9936 (18)</td>
<td>Rb2—Te5vii</td>
</tr>
<tr>
<td>Te1—Te2</td>
<td>2.9277 (14)</td>
<td>Rb2—Te4vii</td>
</tr>
<tr>
<td>Te1—Te4</td>
<td>2.9889 (15)</td>
<td>Rb2—Te6vii</td>
</tr>
<tr>
<td>Te2—Te3</td>
<td>3.0165 (16)</td>
<td>Rb2—Te2vii</td>
</tr>
<tr>
<td>Te2—Te4</td>
<td>3.0445 (18)</td>
<td>Rb2—Rb2vii</td>
</tr>
<tr>
<td>Te5—Te6</td>
<td>2.7578 (17)</td>
<td>Rb2—Te6vii</td>
</tr>
<tr>
<td>Te7—Te8</td>
<td>2.7648 (15)</td>
<td>Rb2—Te3vii</td>
</tr>
<tr>
<td>Rb1—Te4vii</td>
<td>3.710 (2)</td>
<td>Rb2—Te3vii</td>
</tr>
<tr>
<td>Rb1—Te6vii</td>
<td>4.052 (2)</td>
<td>Rb2—Te5vii</td>
</tr>
<tr>
<td>Rb1—Te6v</td>
<td>3.805 (2)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) -x, y, 1/2 - z; (ii) 1-x, y, 1/2 - z; (iii) 1+x, y, z; (iv) =x, -y, 1-z; (v) 1/2 +x, y, -1/2 - z; (vi) 1/2-x, y, 1/2 + z; (vii) 1-x, y, 1/2 - z; (viii) 1-x, -y, 1-z; (ix) 1/2 -x, y, 1/2 + z.

Direct phase determination yielded the positions of Rb, Zr and Te atoms, and all were subjected to anisotropic refinement. The largest residual electronic density peaks were located around Te and Zr atoms.

Financial support from the National Science Foundation (Grant DMR-9553066 and supplement) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1265). Services for accessing these data are described at the back of the journal.

References

Fig. 1 The crystal structure of Rb$_4$Zr$_3$Te$_{16}$ along the a direction, with double shaded circles for Rb, single shaded circles for Zr and open circles for Te atoms. The atoms are of arbitrary size.

Fig. 2 Comparison of the one-dimensional M/Te chains of K$_4$Hf$_3$Te$_{17}$ (top, A), Cs$_4$Zr$_3$Te$_{16}$ (middle, B) and Rb$_4$Zr$_3$Te$_{16}$ (bottom, C) with shaded circles for Zr and open circles for Te atoms, black lines for Te—Te single bonds and broken lines for longer Te···Te interactions of less than 3.2 Å. The atom-numbering scheme for Rb$_4$Zr$_3$Te$_{16}$ is given; symmetry codes are as in Table 1.

ASHLEY B. ANDERSON, RU-JI WANG AND JING LI

Rb$_4$Zr$_3$Te$_{16}$

ASHLEY B. ANDERSON, RU-JI WANG AND JING LI

Rb$_4$Zr$_3$Te$_{16}$

ASHLEY B. ANDERSON, RU-JI WANG AND JING LI

Rb$_4$Zr$_3$Te$_{16}$
Supplementary data
The data shown below are not normally printed in *Acta Cryst. Section C* but the data will be available electronically via the online contents pages of the journal at http://www.iucr.org/journals/acta/tocs/actac/actac.html

Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

\[U_{eq} = \left(\frac{1}{3} \sum_j U_{ij} a_i a_j \right)^{1/2} \]

<table>
<thead>
<tr>
<th></th>
<th>(x) (Å)</th>
<th>(y) (Å)</th>
<th>(z) (Å)</th>
<th>(U_{eq}) (Å²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb1</td>
<td>0.40048 (18)</td>
<td>-0.14862 (10)</td>
<td>0.35076 (12)</td>
<td>0.0442 (5)</td>
</tr>
<tr>
<td>Rb2</td>
<td>-0.10476 (16)</td>
<td>0.13712 (10)</td>
<td>0.62803 (13)</td>
<td>0.0416 (5)</td>
</tr>
<tr>
<td>Zr1</td>
<td>-0.32009 (12)</td>
<td>0.10990 (7)</td>
<td>0.77140 (10)</td>
<td>0.0168 (3)</td>
</tr>
<tr>
<td>Zr2</td>
<td>0</td>
<td>0.10788 (10)</td>
<td>3/4</td>
<td>0.0165 (4)</td>
</tr>
<tr>
<td>Te1</td>
<td>-0.20199 (9)</td>
<td>0.04683 (5)</td>
<td>0.62703 (7)</td>
<td>0.0212 (2)</td>
</tr>
<tr>
<td>Te2</td>
<td>-0.05604 (9)</td>
<td>0.14819 (6)</td>
<td>0.55653 (7)</td>
<td>0.0257 (3)</td>
</tr>
<tr>
<td>Te3</td>
<td>0.11822 (9)</td>
<td>0.03246 (5)</td>
<td>0.62426 (7)</td>
<td>0.0241 (3)</td>
</tr>
<tr>
<td>Te4</td>
<td>0.30706 (10)</td>
<td>-0.04849 (5)</td>
<td>0.75427 (8)</td>
<td>0.0291 (3)</td>
</tr>
<tr>
<td>Te5</td>
<td>-0.14936 (8)</td>
<td>0.22857 (5)</td>
<td>0.78553 (7)</td>
<td>0.0206 (3)</td>
</tr>
<tr>
<td>Te6</td>
<td>-0.35565 (9)</td>
<td>0.23840 (5)</td>
<td>0.66121 (7)</td>
<td>0.0251 (3)</td>
</tr>
<tr>
<td>Te7</td>
<td>-0.51610 (9)</td>
<td>0.06954 (5)</td>
<td>0.62236 (7)</td>
<td>0.0218 (3)</td>
</tr>
<tr>
<td>Te8</td>
<td>-0.65174 (9)</td>
<td>0.17768 (6)</td>
<td>0.55771 (7)</td>
<td>0.0284 (3)</td>
</tr>
</tbody>
</table>
INTERNATIONAL UNION OF CRYSTALLOGRAPHY

Electronic Proof Instructions

These proofs should be returned within 14 days of October 30 1999. After this period, the Editors reserve the right to publish articles with only the Managing Editor’s corrections.

Please

(1) Read the proofs and indicate corrections on the proof (see next page for details).
(2) Check that the references are correct and complete.
(3) Return one copy of the proofs immediately

(a) by e-mail, giving a full description of all corrections required, to

sc@iucr.org

The subject line of the e-mail should contain the reference number of the paper. A copy of the corrected proofs should also be mailed to Chester.

(b) via facsimile machine (corrections should be clearly marked in black ink, not pencil) by dialling

44 1244 314888

It is recommended that authors check that the transmission has been successful and also send the corrected proofs by mail.

or (c) by mail to

Mr P. STRICKLAND
MANAGING EDITOR,
INTERNATIONAL UNION OF CRYSTALLOGRAPHY,
5 ABBEY SQUARE,
CHESTER CH1 2HU,
ENGLAND

TELEPHONE: 44 1244 342878

Substantial alterations, apart from occasioning delay in publication, are much more expensive than many authors would suppose. Authors may therefore be required to pay for any major alterations from their original copy, and it may sometimes be necessary to disallow such changes. Where alterations are unavoidable every effort should be made to substitute words or phrases equal in length to those deleted.

Please note that in order to save postal expenses and clerical work, the typescript, drawings and photographs of articles are normally destroyed after publication. Drawings and photographs will only be returned to authors if their return is specifically requested.

Authors wishing to obtain the publication details of their paper should refer to the status information service on the IUCr web pages (http://www.iucr.org/iucr-top/docs/status.html).
Proof Corrections

Please indicate your corrections on the enclosed proofs. The Managing Editor will then mark the corrections on a second proof which will be sent to the printer. It is therefore important to make clear to the Managing Editor what correction is needed, but it is not important how this is done. Corrections may be made in the text and margin in any of the commonly used systems (Continental European, American or Russian, as well as English). The main points of the system recommended by the printer are given below.

1. Each place in the text where a correction is needed should be indicated either by crossing out the characters to be corrected or by an insert mark (✓) if an insertion is needed.
2. The correct character, word, instruction or insertion should be shown in the margin at one end of the line and should be terminated with a long slash mark (/).
3. The corrections in the margins (both left and right margins may be used) should be arranged in the same sequence as they are required in the line of text.
4. Characters to be printed in the superior position, such as superscripts, apostrophes and quotation marks, are to be so identified by the symbol ∪ under them, e.g. ∪ or ∪. Characters to be printed in the inferior position, such as subscripts, are to be identified by the symbol ∩ over them, e.g. ∩.
5. Instructions written in the margins should be encircled. This indicates that this text is not to be printed. This does not apply to the full stop (period), the colon and the solidus (slash mark), which are circled for clarity.
6. Some instructions are needed so frequently that it is convenient to indicate them simply with special symbols or abbreviations. The symbols are recognized as instructions without being circled. Some frequently used instructions are given in the following list.

<table>
<thead>
<tr>
<th>Alteration</th>
<th>Marginal mark</th>
<th>Mark in text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert or substitute:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Full stop (period)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Solidus (slash mark)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Hyphen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Chemical bond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superior</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>e.g. superscript 2</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>or apostrophe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>e.g. subscript 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capitals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small capitals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bold type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower case letters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roman type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Delete and close up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close up</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Invert type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faulty setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invert type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leave as printed</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>New paragraph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New paragraph or line</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please note
(a) No correction should be made in the text without an accompanying mark in the margin, or the correction may be easily missed.
(b) Complicated corrections can be explained in a covering letter.
Acta Crystallographica Section C

PAID OFFPRINT ORDER FORM
Return within 14 days of October 30 1999

Please keep a copy of this order and send the original to:

MANAGING EDITOR
International Union of Crystallography
5 Abbey Square
Chester CH1 2HU, England

Author(s) Ashley B. Anderson, Ru-Ji Wang and Jing Li

Title of article Rb$_4$Zr$_3$Te$_6$, a one-dimensional zirconium telluride synthesized from molten salt

I wish to order paid offprints

These offprints should be sent to

Name ‘Wang, Ru-Ji’;

Address Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China.

If the above address is not correct, please indicate an alternative:

Date | Signature

☐ A cheque for payable to MUNKSGAARD is enclosed

☐ An official purchase order ☐ is enclosed ☐ will follow Purchase order No.

Spaces below for the use of MUNKSGAARD, Copenhagen

Date of despatch | Number of parcels | Weight | Postage | Invoice, date, No.
OFFPRINTS
Offprints are printed exactly as the article appears in the journal. Extracts of the preceding or subsequent article will not be “blanked out”. Offprints of articles which do not commence at the top of a right-hand page in the journal will include the last part of the preceding article, whilst offprints of articles which do not finish at the bottom of a left-hand page in the journal will include the first part of the subsequent article.

Twenty-five offprints are supplied free. Do not return this form if you only require the free offprints.

Further offprints without limit of number may be purchased at the prices given in the table below. the requirements of all joint authors, if any, and of their laboratories should be included in a single order, specifically ordered on the form overleaf, which must be accompanied by a remittance payable to MUNKSGAARD unless an official purchase order is sent. All orders must be submitted promptly; it will not be possible to supply reprints for orders received after the journal is printed.

Please note that normally offprints are sent about one month after publication of the article, and normally by surface mail. If offprints are wanted by air mail additional costs will be invoiced.

Orders should be forwarded to:

MANAGING EDITOR
International Union of Crystallography
5 Abbey Square
Chester CH1 2HU, England

PRICE LIST OF OFFPRINTS

Prices are given in danish kroner and include postage.

Offprints with covers are only available by special order. Please contact the Managing Editor (at the address given above) for a quotation.

<table>
<thead>
<tr>
<th>Number of additional offprints required</th>
<th>Size of paper (in printed pages)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1–2</td>
</tr>
<tr>
<td>50</td>
<td>297</td>
</tr>
<tr>
<td>100</td>
<td>429</td>
</tr>
<tr>
<td>150</td>
<td>565</td>
</tr>
<tr>
<td>200</td>
<td>700</td>
</tr>
<tr>
<td>Additional 50’s</td>
<td>134</td>
</tr>
</tbody>
</table>

IMPORTANT:
European Union residents: Please add your local VAT to the price in DKK.