1 Robust Steiner tree problem

The input to the Steiner tree problem is an undirected graph $G = (V, E)$, a cost function $c : E \to \mathbb{R}^+$, and a subset $T \subseteq V$ called “terminals”. The objective is to find a connected subgraph H that includes all the terminals T and has minimum cost $c(H) := \sum_{e \in H} c_e$.

In the robust version of the Steiner tree problem, the input also contains an integer k and a real number $\lambda \geq 1$. There are two stages. In the first stage the algorithm has to identify a subset $E_1 \subseteq E$ of edges to buy. In the second stage, the cost of each edge in $E \setminus E_1$ increases by a factor of λ and a subset $T' \subseteq T$ of at most k terminals is revealed. We refer to T' as a “scenario”. The algorithm, in the second stage, has to augment the solution E_1 by buying edges $E_2(T')$ so that the resulting graph $E_1 \cup E_2(T')$ includes a Steiner tree on terminals T'. The choice of edges $E_2(T')$ is allowed to depend on the subset T'. The overall cost of this solution is thus

$$\sum_{e \in E_1} c_e + \lambda \cdot \sum_{e \in E_2(T')} c_e.$$

The objective is to minimize the maximum overall cost over all scenarios, i.e., to minimize

$$\max_{T' \subseteq T, |T'| \leq k} \lambda \cdot \sum_{e \in E_2(T')} c_e.$$

The edge-costs c_e induce a shortest-path metric on the vertices V: for any two vertices $u, v \in V$, we use $d(u, v)$ to denote the length of the shortest path between u and v, under costs c_e in graph G.

1.1 The algorithm

Let E_1^* and $E_2^*(T')$ be the set of edges optimum buys in the first stage and the second stage for scenario T' respectively. Let $OPT = OPT_1 + \lambda \cdot OPT_2$ be the overall cost of the optimum, where $OPT_1 = \sum_{e \in E_1} c_e$ is its cost in the first stage and $OPT_2 = \max_{T' \subseteq T, |T'| \leq k} \sum_{e \in E_2^*(T')} c_e$ is the maximum cost in the second stage divided by λ.

First stage. Our algorithm, in the first stage, guesses the value of OPT_2. It then computes a subset of terminals $C = \{c_1, c_2, \ldots, c_p\} \subseteq T$ called “centers” and an assignment $\pi : T \to C$ that satisfy:

- The centers are far apart: $d(c_i, c_j) > rOPT_2/k$ for all $i \neq j$, and
- Each terminal is close to its assigned center: $d(t, \pi(t)) \leq rOPT_2/k$ for all $t \in T$,

where $r > 1$ is a constant to be determined later. Such a clustering can be computed as follows. Pick any terminal and name it c_1. Assign all terminals within a distance of $rOPT_2/k$ from c_1 to c_1 and remove these terminals. Pick any one of the remaining terminals and name it c_2, and so on.

The algorithm then computes an approximate minimum-cost Steiner tree T in G on the centers C under the costs c_e. Currently, the best known polynomial-time algorithm for the Steiner tree problem is γ-approximate, where $\gamma < 1.55$.

The algorithm buys the edges in the Steiner tree in the first stage.

Second stage. In the second stage a subset T' of at most k terminals is revealed. The algorithm, in the second stage, buys the shortest path from each terminal $t \in T'$ to its assigned center $\pi(t)$.

1
Remark 1.1 (Guessing \(\text{OPT}_2 \)) The algorithm in fact tries all guesses of \(\text{OPT}_2 \) that are powers of \((1 + \epsilon) \) and takes the cheapest solution for any of these guesses. To simplify the presentation below, we assume that the guess on \(\text{OPT}_2 \) is exact.

It is easy to see that the algorithm computes a feasible solution to the problem.

1.2 The analysis

It is easy to see that the algorithm pays at most \(\lambda \cdot r \cdot \text{OPT}_2 \) in the second stage. This holds since the distance of any terminal to its assigned center is at most \(r \cdot \text{OPT}_2 / k \). Since at most \(k \) terminals need to be connected to their centers, the total cost of these connections is at most \(\lambda \cdot k \cdot r \cdot \text{OPT}_2 / k \).

We now bound the cost of the algorithm in stage one using the following lemma.

Lemma 1.2 Assuming \(r > 4 \), there exists a Steiner tree on centers \(C \) in \(G \) that has cost at most \(\frac{1}{r - 1} \cdot \text{OPT}_1 + \text{OPT}_2 \).

Proof: Recall that \(E^*_1 \) is the set of edges optimum buys in stage one and \(\text{OPT}_1 = \sum_{c \in E^*_1} c_e \). Let \(H \) be a graph obtained from \(G \) by shrinking the edges in \(E^*_1 \). We now perform another clustering of the centers \(C \) in the shortest-path metric on \(C \) induced by the graph \(H \) as follows. We identify a subset of centers \(L = \{l_1, l_2, \ldots, l_t\} \) and a mapping \(\phi : C \rightarrow L \) such that

- \(d_H(l_i, l_j) > 2 \cdot \text{OPT}_2 / k \) for all \(i \neq j \), and
- \(d(c, \phi(c)) \leq 2 \cdot \text{OPT}_2 / k \) for all centers \(c \in C \),

where \(d_H \) denotes the shortest-path distance in the graph \(H \). Such a clustering can be computed as follows. Pick any center and name it \(l_1 \). For all centers \(c \in C \) with \(d_H(c, l_1) \leq 2 \cdot \text{OPT}_2 / k \), define \(\phi(c) = l_1 \). Remove all such centers from \(C \) and repeat.

We now argue that \(|L| < k \). Assume on the contrary that \(|L| \geq k \) and let \(T' \subseteq L \) be any subset of size \(k \). Consider the scenario \(T' \). Since even after shrinking the edges in \(E^*_1 \) that optimum bought in the first stage, any two centers in \(L \) are more than \(2 \cdot \text{OPT}_2 / k \) apart, the spheres of radius \(\text{OPT}_2 / k \) centered at the centers in \(T' \) in \(H \) are disjoint. Therefore the minimum Steiner tree on \(T' \) in \(H \) has cost more than \(\text{OPT}_2 \). This is a contradiction since the optimum pays at most \(\text{OPT}_2 \) in the second phase to connect all the centers in \(T' \) after shrinking the edges in \(E^*_1 \).

Since \(|L| < k \), we now consider scenario \(L \). There exists a Steiner tree \(E^*_L \) on \(L \) in \(H \) with cost at most \(\text{OPT}_2 \). Thus \(E^*_1 \cup E^*_L \) has cost at most \(\text{OPT}_1 + \text{OPT}_2 \) and contains a Steiner tree on \(L \) in \(G \). We now show how to extend this into a subgraph with low cost and which contains a Steiner tree on \(C \) in \(G \).

Now recall that the pairwise distance between centers \(C \) in \(G \) is at least \(r \cdot \text{OPT}_2 / k \). Thus spheres of radius \(r \cdot \text{OPT}_2 / (2k) \) around the centers \(C \) are disjoint in \(G \). Note however that \(d_H(c, \phi(c)) \leq 2 \cdot \text{OPT}_2 / k \) for all centers \(c \in C \). Thus at least \(r \cdot \text{OPT}_2 / (2k) - 2 \cdot \text{OPT}_2 / k = (r/2 - 2) \cdot \text{OPT}_2 / k \) cost of \(E^*_1 \cup E^*_L \) must lie inside the sphere of radius \(r \cdot \text{OPT}_2 / (2k) \) around each center \(c \in C \). We can thus extend the subgraph \(E^*_1 \cup E^*_L \) by adding shortest paths from each \(c \) to \(\phi(c) \) in \(H \) and charge this additional cost to the contribution of \(E^*_1 \) in the respective spheres around \(c \in C \). The resulting subgraph clearly constains a Steiner tree on \(C \) in \(G \). The overall cost of this subgraph is thus at most

\[
\text{OPT}_1 + \text{OPT}_2 + \frac{2}{r/2 - 2} \cdot \text{OPT}_1 = \frac{r}{r - 4} \cdot \text{OPT}_1 + \text{OPT}_2.
\]

Hence the proof. \(\square \)
Since we use a γ-approximation algorithm to compute a Steiner tree in stage one, the overall cost of stage one is at most
\[\frac{\gamma \cdot r}{r - 4} \cdot \text{OPT} + \gamma \cdot \text{OPT}_2. \]
Combining this with the second stage cost, the overall cost of our solution is
\[\frac{\gamma \cdot r}{r - 4} \cdot \text{OPT} + (\gamma + \lambda r) \cdot \text{OPT}_2. \]
Comparing this with the optimum cost $\text{OPT}_1 + \lambda \cdot \text{OPT}_2$ and setting $r = 2(1 + \sqrt{1 + \gamma})$, we get that the algorithm is an 5.2-approximation.

(In the above calculation, I have taken the worst case $\lambda = 1$. But in this case “don’t buy anything in stage one” does better. So the approximation factor can be reduced further by balancing this with the above algorithm. Calculations deferred.)