LP-relaxations for Tree Augmentation

Guy Kortsarz1 and Zeev Nutov2

1 Rutgers University–Camden, NJ. guyk@camden.rutgers.edu
2 The Open University of Israel. nutov@openu.ac.il

Abstract. In the Tree Augmentation Problem (TAP) the goal is to augment a tree T by a minimum size edge set F from a given edge set E such that $T \cup F$ is 2-edge-connected. The best approximation ratio known for TAP is 1.5. In the more general Weighted TAP problem, F should be of minimum weight. Weighted TAP admits several 2-approximation algorithms w.r.t. to the standard cut-LP relaxation. The problem is equivalent to the problem of covering a laminar set family. Laminar set families play an important role in the design of approximation algorithms for connectivity network design problems. In fact, Weighted TAP is the simplest connectivity network design problem for which a ratio better than 2 is not known. Improving this “natural” ratio is a major open problem, which may have implications on many other network design problems. It seems that achieving this goal requires finding an LP-relaxation with integrality gap better than 2, which is an old open problem even for TAP. In this paper we introduce two different LP-relaxations, and for each of them give a simple algorithm that computes a feasible solution for TAP of size at most $7/4$ times the optimal LP value. This gives some hope to break the ratio 2 for the weighted case.

1 Introduction

1.1 Problem definition and related problems

A graph (possibly with parallel edges) is k-edge-connected if there are k pairwise edge-disjoint paths between every pair of its nodes. We study the following fundamental connectivity augmentation problem: given a connected undirected graph $G = (V,E_G)$ and a set of additional edges (called “links”) E on V disjoint to E_G, find a minimum size edge set $F \subseteq E$ such that $G + F = (V, E_G \cup F)$ is 2-edge-connected. Contracting the 2-edge-connected components of the input graph G results in a tree. Hence, our problem is:

<table>
<thead>
<tr>
<th>Tree Augmentation Problem (TAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance: A tree $T = (V,E_T)$ and a set of links E on V disjoint to E_T.</td>
</tr>
<tr>
<td>Objective: Find a minimum size subset $F \subseteq E$ of links such that $T \cup F$ is 2-edge-connected.</td>
</tr>
</tbody>
</table>

TAP can be formulated as the problem of covering the edges of a tree by paths. For $u,v \in V$ let $(u,v) \in E_T$ denote the edge in T and uv the link in E.
between \(u\) and \(v\). Let \(P(uv) = P_T(uv)\) denote the path between \(u\) and \(v\) in \(T\). A link \(uv\) covers all the edges along the path \(P(uv)\). Then TAP is the problem of finding a minimum subset of (paths of the) links that cover the edges of \(T\).

TAP can be also formulated as the problem of covering a laminar set family. In what follows, root \(T\) at some node \(r\). The choice of the root \(r\) defines a partial order on \(V\): \(u\) is a descendant of \(v\) (or \(v\) is an ancestor of \(u\)) if \(v\) belongs to \(P(ru)\). The rooted subtree of \(T\) induced by \(v\) and its descendants is denoted by \(T_v\) (\(v\) is the root of \(T_v\)). Let \(T = \{T_v : v \in V \setminus \{r\}\}\). The family of node sets of the trees in \(T\) is laminar, and \(F \subseteq E\) is a feasible solution for TAP if and only if \(F\) covers \(T\), namely, for every \(T' \in T\) there is a link in \(F\) from \(T'\) to \(T \setminus T'\).

TAP is also equivalent to the problem of augmenting the edge-connectivity from \(k\) to \(k+1\) for any odd \(k\); this is since the family of minimum cuts of a \(k\)-connected graph with \(k\) odd is laminar.

In the more general Weighted TAP problem, the links in \(E\) have weights \(\{w_e : e \in E\}\) and the goal is to find a minimum weight augmenting edge set \(F \subseteq E\) such that \(T \cup F\) is 2-edge connected. Even a more general problem is the 2-Edge-Connected Subgraph problem, where the goal is to find a spanning 2-edge-connected subgraph of a given weighted graph; Weighted TAP is a particular case, when the input graph contains a connected spanning subgraph of cost zero.

1.2 The new techniques introduce

We note that our algorithm is the first to give integrality gap less than 2 with respect to an LP (in fact it seems to have been the first to break the integrality gap of 2 with respect to any mathematical programming). An important feature is that we do not need to solve the LP. Taking a partial list of the constrains, we get a problem that has a combinatorial optimum solution, and the other fractional variables are set as a function of this solution, getting a feasible primal and dual solutions. This makes our algorithm very fast: its running time is \(O(m \cdot n)\) which is much lower than the time for solving even basic LP’s. In [2], a \(1.5+\epsilon\) approximation for TAP is provided. This hold for any constant \(\epsilon>0\). The ratio is with respect to a SDP relaxation obtained by additionally using the Lasserre lift and project method to tighten the Semi Definite mathematical programs. The algorithm and analysis seem quite involved and surely make the paper technically strong.

On the other hand, our goal was to find the simplest algorithms that give integrality gap for some LP with ratio less than 2. Even if the analysis may be more involved, as is the case of the dual fitting algorithm. It seems that very complex algorithms are hard to use to improve the ratio 2 for Weighted Tap while our algorithms, being simple, give reasonable hope to break the ratio 2. We note that our algorithms use several ideas from [7, 8], but both algorithms are not identical to any previous algorithm.

The primal fitting algorithm uses many of the techniques of [16]. Thus we only explain the new ideas.

We use an LP with an important new valid inequality. Without this valid inequality our method fails. The valid inequality is that the fractional value of
any twin link equals the sum of fractional values of the edges entering its stem. We prove that this constraint is indeed valid.

We have a new and simple way to get the lower bound using the LP. In addition, to get the lower bound we need to shift fractional values from links entering stems to their twin links, getting a different valid LP solution, which is more useful. Again, without this new idea, our analysis fails. Finally, Lemma 11 is completely new and is related to the way the LP works.

The dual fitting analysis is quite more complex. We need find a way to increment the dual load of some trees whenever a link is added to the solution. And we have several different dual variables that correspond to different cases of adding links. Thus analysis is new and rather involved.

The most basic definition is already quite non trivial. In Definition 8, the dual load of an edge, and the dual credit of a node are defined. The definition is based on the dual value of some trees containing the edge, or the node, in question. The dual fitting analysis seems important because this analysis seems to provides the highest chance for breaking the ratio 2 for weighted TAP.

1.3 Previous and related work

TAP is NP-hard even for trees of diameter 4 [9], or when the set E of links forms a cycle on the leaves of T [3]. The first 2-approximation for Weighted TAP was given 24 years ago in 1981 by Fredrickson and Jájá [9], and was simplified later by Khuller and Thurimella [15]. These algorithms reduce the problem to the Min-Cost Arborescence problem, that is solvable in polynomial time [5], while invoking a factor of 2 in the ratio. The primal-dual algorithm of [12, 11] is another combinatorial 2-approximation algorithm for the problem. The iterative rounding algorithm of Jain [13] is an LP-based 2-approximation algorithms. These algorithms achieve ratio 2 w.r.t. to the standard cut-LP that seeks to minimize $\sum_{e \in E} w_e x_e$ over the following polyhedron:

$$
\begin{align*}
 x_e &\geq 0 \quad \forall e \in E \\
 x(\delta(T')) &\geq 1 \quad \forall T' \in \mathcal{T}
\end{align*}
$$

Here $\delta(T')$ is the set of links with exactly one endnode in T', $x(F) = \sum_{e \in F} x_e$ is the sum of the variables indexed by the links in F, and \mathcal{T} is the set of proper rooted subtrees of T w.r.t. the chosen root r.

Laminar set families play an important role in the design and analysis of exact and approximation algorithms for network design problems, both in the primal-dual method and the iterative rounding method, c.f. [17, 12]. Weighted TAP is the simplest network design problem for which a ratio better than 2 is not known. Breaking the “natural” ratio of 2 for Weighted TAP is a major open problem in network design, that may have implications on other problems.

As a starting point, Khuller [14] in his survey on high connectivity network design problems posed as a major open question achieving ratio better than 2 for TAP. Nagamochi [19] used a novel lower bound to achieve ratio $1.875 + \epsilon$ for TAP. The sequence of papers [7, 8] introduced additional new techniques to
achieve ratio 1.8 by a much simpler algorithm and analysis. Recently, we achieved the currently best known ratio of 1.5 [16]. However, in contrast to the 1.8 ratio algorithm, this algorithm of [16], seems way too complex to use, in order to improve the ratio 2 for Weighted TAP.

Several algorithms for Weighted TAP with ratio better than 2 are known for special cases. In [6] is given an algorithm with ratio \((1 + \ln 2)\) and running time \(n f(D)\) where \(D\) is the diameter of \(T\). In [3] it is shown how to round a half-integral solution to the cut-LP within ratio 4/3. However, as is pointed in [3], the cut-LP LP has extreme points which are not half integral.

Studying various LP-relaxations for TAP is motivated by the hope that these may lead to breaking the ratio of 2 for Weighted TAP. Thus several paper analyzed integrality gaps of LP/SDP relaxations for the problem. Cheriyan, Karloff, Khandekar, and Koenemann [4] gave an example of a TAP instance with integrality gap 1.5. w.r.t. the standard cut-LP. For the special case of TAP when every link connects two leaves, [18] obtained ratios 5/3 w.r.t. the cut LP, ratio 3/2 w.r.t. to a strengthened “leaf edge-cover” LP, and ratio 17/12 not related to any LP. However, the analysis of [18] does not extend directly to the general TAP. As mentioned earlier, Cheriyan and Gao [2] provide an interesting 1.8 + \(\epsilon\) approximation for TAP for any constant \(\epsilon\), by SDP relaxation combined with a Lasserre lift and project method to tighten Semi Definite mathematical programs. As stated above, recently [2] provide a 1.5 + \(\epsilon\) ratio using the same techniques. This algorithm might be way too complex to be used for breaking the ratio of 2 for the weighted case.

This paper [1] introduces the so called “non-overlapping” constraints, that we use in our paper.

We introduce two simple new LP-relaxations, and prove that they have integrality gap at most 7/4 for TAP. Finally, we mention some work on the closely related 2-Edge-Connected Subgraph problem. This problem was also vastly studied. For general weights, the best known ratio is 2 by Fredrickson and Jáá [9], which can also be achieved by the algorithms in [15] and [13]. For particular cases, better ratios are known. Fredrickson and Jáá [10] showed that when the edge weights satisfy the triangle inequality, the Christofides heuristic has ratio 3/2. For the special case when all the edges of the input graph have unit weights (the “min-size” version of the problem), the currently best known ratio is 4/3 due to Serbo and Vygen [21].

2 New valid constraints

In this section we introduce new LP-relaxations for TAP and in subsequent sections prove that (for the unweighted case) they both have integrality gap 7/4. Our LP-relaxations combine some ideas from [18, 8, 16], but also use new crucial valid constraints. We need some definition to introduce these constraints.

Definition 1 (shadow, shadow-minimal cover). Let \(P(uv)\) denote the path between \(u\) and \(v\) in \(T\). A link \(u'v'\) is a shadow of a link \(uv\) if \(P(u'v') \subseteq P(uv)\).
A cover F of T is **shadow-minimal** if for every link $uv \in F$ replacing uv by any proper shadow of uv results in a set of links that does not cover T.

We refer to the addition of all shadows of existing links as **shadow-completion**. Shadow completion does not affect the optimal solution size, since every shadow can be replaced by some link covering all edges covered by the shadow. Thus we may assume the following:

The Shadow-Completion Assumption
The set of links E is closed under shadows.

For $A, B \subseteq V$ and $F \subseteq E$ let $\delta_F(A, B)$ denote the set of links in F with one end in A and the other end in B, and let $\delta_F(A) = \delta_F(A, V \setminus A)$ denote the set of links in F with exactly one endnode in A. The default subscript in the above notation is E. To **contract** a subtree T' of T is to combine the nodes in T' into a new node v. The edges and links with both endpoints in T' are deleted. The edges and links with one endpoint in T' now have v as their new endpoint.

Definition 2 (leaf, twin link, stem). The **leaves** of T are the nodes in $V \setminus \{r\}$ that have no descendants. We denote the leaf set of T by $L(T)$, or simply by L, when the context is clear. A link $ab \in \delta(L, L)$ is a **twin link** and the least common ancestor s of a,b is a **stem** if the contraction of T_s results in a new leaf; such a,b are called **twins**. Let W denote the set of twin links, and for $e \in W$ let s_e denote the stem of e.

For $A \subseteq V$, we say that a rooted subtree T' of T is A-**closed** if there is no link in E from $A \cap T'$ to $T \setminus T'$, and T' is A-**open** otherwise.

Definition 3 (locked node, locking link, dangerous locking tree).
A node a (or a subtree T_a) is **locked** by a link $bb' \in \delta(L, L)$ and bb' is the **locking link of a** if (see Fig. 1(a)) the tree obtained from T by contracting T_a into the node a has a rooted proper subtree $T' = T_r'$ that is a-closed such that $L(T_r') = \{a,b,b'\}$; such minimal T' is called the **locking tree of a** (note that such locking tree is unique); a locking tree is a **dangerous locking tree** if it is as in Fig. 1(b) with the links depicted present in E; namely, a locking tree is dangerous if there exists an ordering b,b' of the locking link endnodes such that:

- The contraction of ab' does not create a new leaf.
- $ab' \in E$.
- T' is b'-open.

Let N denote the set of non-dangerous locking trees.

Note that an ordering b,b' as in the above definition may not be unique; namely, it may be that also the contraction of ab does not create a new leaf, $ab \in E$, and T' is b'-open - see Fig. 1(c).

In what follows, let us use the following notation:
Fig. 1. (a) A locking tree; no link with an endnode in T_a has its other endnode in $T \setminus T_r$. (b,c) Dangerous trees; solid thin lines show links that must exist in E. The endnodes b, b' of the locking link are original leaves; in (a), a is an original leaf, and in (b),(c) the subtree T_a is contracted into a, so a may be a compound node or an original leaf. Some of the edges of T can be paths.

- For $s \in S$ let $\sigma(s)$ denote the set of links in $\delta(s)$ that have their other endnode not in T_s.
- For $T' \in N$ let $\zeta(T')$ denote the set of links incident to some non-leaf node of T'.
- Let $\mathcal{OL} = \{A \subseteq V : |A \cap L| \text{ is odd}\}$.
- Let $x \in \mathbb{R}^E$ and $F \subseteq E$ let $x(F) = \sum_{e \in F} x_e$.

The proof of the following statement can be found in [8, 16]; we provide a proof sketch for completeness of exposition.

Lemma 1. Let F be a shadow-minimal cover of T. Then the following holds:

(i) $\delta_F(L, V)$ is an exact edge-cover of L, namely $|\delta_F(v)| = 1$ for every $v \in L$.
(ii) If $e \in F \cap W$ then $|\sigma(s_e) \cap F| = 1$.
(iii) $\zeta(T) \cap F \neq \emptyset$ for any $T' \in \mathcal{T}$.

Proof. Let us say that two links **overlap** if their paths share an edge and one contains an end of the other. It is easy to see that F is not shadow minimal if and only if two links in F overlap. As any two links incident to the same leaf overlap, (i) follows.

Now let $e \in F \cap W$ and consider a link f that covers the parent edge of the stem s_e of e. It is easy to see that the only case that e and f do not overlap is if $f \in \sigma(s_e)$, and that any two links in $\sigma(s_e)$ overlap. This implies (ii).

Let T' be a locking tree as in Definition 3 (after T_a is contracted into a). We will show that if $\zeta(T) \cap F = \emptyset$ then T' is dangerous. Consider a link $e = au$ that covers the parent edge of a and a link $e' = u'v$ that covers the parent edge of T', where $v \notin T'$. Note that $e \neq e'$, since T' is a-closed. If $\zeta(T) \cap F = \emptyset$ then $\{u, u'\} \subseteq \{b, b'\}$, and since by (i) $|\delta_F(b)| = |\delta_F(b')| = 1$, we must have $\{u, u'\} = \{b, b'\}$. If $u = b$ and contraction of ab creates a new leaf, then the link in F that covers the parent edge of this new leaf belongs to $\zeta(T)$. Otherwise, T' must be dangerous, as claimed. \qed
Now we present our new valid inequalities for TAP.

Lemma 2. Suppose that the Shadow-Completion Assumption holds, and let x be the characteristic vector of a shadow minimal cover F of T. Then x satisfies the following constraints

\begin{align*}
 x(\sigma(s_e)) - x_e & \geq 0 \quad \forall e \in W \\
 x(\zeta(T')) & \geq 1 \quad \forall T' \in \mathcal{T} \\
 x(\delta(v)) & = 1 \quad \forall v \in L \\
 x(\delta(A,V)) & \geq \lceil \frac{|A \cap L|}{2} \rceil \quad \forall A \in \mathcal{O}_L
\end{align*}

Proof. Consider the polyhedron Π_L defined by (1), (5), and (6). Then Π_L is the convex hull of the exact edge-covers of L, see [20, Theorem 34.2]; thus by Lemma 1(i), these constraints are valid. The validity of the constraints (3) follows from Lemma 1(ii) (in fact, $x(\sigma(s_e)) = x_e$ holds), and the validity of the constraints (4) follows from Lemma 1(iii). \qed

In subsequent sections we will consider two LPs, where both have the constraints (1), (2), and (3). One LP has an additional constraint (4), while the other LP has additional constraints (5) and (6) instead.

3 The algorithms

For a set of links $I \subseteq E$, let T/I denote the tree obtained by contracting every 2-edge-connected component of $T \cup I$ into a single node. We often refer to the contraction of every 2-edge-connected component of $T \cup I$ into a single node as the contraction of the links in I. Our algorithm iteratively contracts certain subtrees of T/I. We refer to the nodes created by contractions as **compound nodes**, and denote by C the set of compound nodes of T/I. Non-compound nodes are referred to as **original nodes** (of T). For technical reasons, the root r is also considered as a compound node, hence initially $C = \{r\}$.

Our algorithms start with a partial solution $I = \emptyset$ and with a certain matching $M \subseteq \delta(L,L) \setminus W$. We denote by U the set of leaves of T/I unmatched by M. The algorithm iteratively finds a subtree T' of T/I and a cover I' of T', and **contracts T' with I'**, which means adding I' to I and contracting T' into a new compound node. To use the notation T/I properly, we will assume that I' is an exact cover of T', namely, that the set of edges of T/I that is covered by I' equals the set of edges of T' (this is possible due to shadow completion).

Another property of a contracted tree T' is given in the following definition.

Definition 4 (M-compatible subtree). Let M be a matching on the leaves of T/I. A subtree T' of T/I is M-**compatible** if for any $bb' \in M$ either both b,b' belong to T', or none of b,b' belongs to T'. We say that a contraction of T' with I' is M-compatible if T' is M-compatible.
Assuming all compound nodes were created by M-compatible contractions, then the following type of contractions is also M-compatible.

Definition 5 (greedy contraction). Adding to the partial solution I a link with both endnodes in U is called a **greedy contraction**.

One of the steps of the algorithm is to apply greedy contractions exhaustively; clearly, this can be done in polynomial time.

We now describe a more complicated type of M-compatible contractions.

Definition 6 (semi-closed tree). Let M be a matching on the leaves of T/I. A rooted subtree T' of T/I is **semi-closed** (w.r.t. M) if it is M-compatible and closed w.r.t. its unmatched leaves. T' is minimally semi-closed if T' is semi-closed but any proper subtree of T' is not semi-closed.

For a semi-closed subtree T' of T/I let us use the following notation:

- M' is the set of links in M with both endnodes in T'.
- U' is the set of leaves of T' unmatched by M.

Our algorithms maintain the following invariant:

Partial Solution Invariant.
The partial solution I is obtained by sequentially applying a greedy contraction or a legal semi-closed tree contraction with an exact cover.

Definition 7 (dangerous semi-closed tree). A semi-closed subtree of T/I is **dangerous** (w.r.t. a matching M) if it is as in Definition 3 with $bb' \in M$.

In [8, 16] the following is proved:

Lemma 3 ([8, 16]). Suppose that the Partial Solution Invariant hold for T, M, and I, and that T/I has no greedy contraction. Then there exists a polynomial time algorithm that finds a non-dangerous semi-closed tree T' of T/I and an exact cover $I \subseteq E$ of T' of size $|I'| = |M'| + |U'|$.

A formal description of the algorithms is given in Algorithms 1 and 2. Algorithm 1 and its dual-fitting analysis are our main results, since they are relatively simple and new. Our algorithms differ from previous algorithms in the matching M computed at step 2. In Algorithm 1 the matching M is only required to be inclusion maximal, while all previous algorithms computed a maximum size matching in $\delta(L,L) \setminus W$. This is a substantial difference, since otherwise, to perform an LP-based analysis, one needs to add the constraints (6), as we will do in the analysis of Algorithm 2.
Algorithm 1: Dual-Fitting \((T = (V, E), E) \) (ratio: \(\rho = 7/4 \))

1. **initialize:** \(I \leftarrow \emptyset \), \(C \leftarrow \{r\} \).
2. \(M \leftarrow \) maximal matching in \(\delta(L, L) \setminus W \), \(U \leftarrow \) leaves unmatched by \(M \).
3. Contract every link \(ab \in W \) with \(a, b \in U \).
4. Exhaust greedy contractions and update \(I, C \) accordingly.
5. **while** \(T/I \) has more than one node **do**
 6. Find \(T', I' \) as in Lemma 3.
 7. Contract \(T' \) with \(I' \).
 8. Exhaust greedy contractions and update \(I, C \) accordingly.
9. **return** \(I \)

Algorithm 2: Primal-Fitting \((T = (V, E), E) \) (ratio: \(\rho = 7/4 \))

1. **initialize:** \(C \leftarrow \{r\} \).
2. \(F_L \leftarrow \min\-w\-weight exact edge-cover of \(L \), \(w_e = \begin{cases} \rho & e \in \delta(L, L) \setminus W \\ \rho - \frac{1}{2} & e \in \delta(L, V \setminus L) \\ \rho + \frac{1}{2} & e \in W \end{cases} \)
3. \(M \leftarrow \delta_{F_L}(L, L), U \leftarrow \) the set leaves of \(T \) unmatched by \(M \)
4. \(I \leftarrow M \cap W, M \leftarrow M \setminus W \).
5. Exhaust greedy contractions and update \(I, C \) accordingly.
6. **while** \(T/I \) has more than one node **do**
 7. Find \(T'', I'' \) as in Lemma 3.
 8. Contract \(T'' \) with \(I'' \).
 9. Exhaust greedy contractions and update \(I, C \) accordingly.
9. **return** \(I \)

Our algorithms are supplemented by an LP-based analysis to achieve ratios better than 2 w.r.t. to certain LPs. Consider the following two linear programs (LP1) and (LP2), where

- (LP1) is defined by the constraints (1), (2), (3), and (4).
- (LP2) is defined by the constraints (1), (2), (3), (5), and (6).

\[
\begin{align*}
\text{(LP1)} & \quad \min x(E) \\
\text{s.t.} & \quad x_e \geq 0 \quad \forall e \in E \tag{1}\n& \quad x(\delta(T')) \geq 1 \quad \forall T' \in \mathcal{T} \tag{2}\n& \quad x(\sigma(s_e)) - x_e \geq 0 \quad \forall e \in W \tag{3}\n& \quad x(\zeta(T')) \geq 1 \quad \forall T' \in \mathcal{N} \tag{4}
\end{align*}
\]

\[
\begin{align*}
\text{(LP2)} & \quad \min x(E) \\
\text{s.t.} & \quad x_e \geq 0 \quad \forall e \in E \tag{1}\n& \quad x(\delta(T')) \geq 1 \quad \forall T' \in \mathcal{T} \tag{2}\n& \quad x(\sigma(s_e)) - x_e \geq 0 \quad \forall e \in W \tag{3}\n& \quad x(\delta(e)) = 1 \quad \forall e \in L \tag{5}\n& \quad x(\delta(A, V)) \geq |A \cap L|/2 \quad \forall A \in \mathcal{O}_L \tag{6}
\end{align*}
\]
Theorem 1. Algorithm 1 computes a solution I of size at most $7/4$ times the optimal value of (LP1).

Theorem 2. Algorithm 2 computes a solution I of size at most $7/4$ times the optimal value of (LP2).

4 Dual-fitting analysis of Algorithm 1 (Theorem 1)

For a link $e \in E$ let us use the following notation:

- $\delta_T^{-1}(e) = \{ T' \in T : e \in \delta(T') \}$; recall that T is the family of proper rooted subtrees of T.
- $\sigma_S^{-1}(e) = \{ s \in S : e \in \sigma(s) \}$; recall that S is the set of stems of T.
- $\zeta_N^{-1}(e) = \{ T' \in N : e \in \zeta(T') \}$; recall that N is the family of non-dangerous locking trees.

With this notation, the dual LP of (LP1) is:

$$
\text{max } y(\mathcal{E}) + q(\mathcal{T}) \\
\text{s.t. } y(\delta_T^{-1}(e)) + z(\sigma_S^{-1}(e)) - |\{ e \} \cap W|z_e + q(\zeta_N^{-1}(e)) \leq 1 \quad \forall e \in E \\
\quad y_{T'} \geq 0 \quad \forall T' \in T \\
\quad z_w \geq 0 \quad \forall w \in W \\
\quad q_{T'} \geq 0 \quad \forall T' \in N
$$

We rewrite Algorithm 1 with the updates of the dual variables as Algorithm 3.

Algorithm 3: DUAL-UPDATE($T = (V, \mathcal{E}), E$) (ratio: $\rho = 7/4$)

1. **initialize**: $C \leftarrow \{ r \}$;
 $y \leftarrow 0, z \leftarrow 0, q \leftarrow 0$.
2. $M \leftarrow$ maximal matching in $E(L, L) \setminus W$, $U \leftarrow$ leaves unmatched by M.
 $y_v \leftarrow 1$ if $v \in U$, $y_v \leftarrow \rho - 1$ if $v \in L \setminus U$.
 $z_e \leftarrow \rho - 1$ for every link $e = ab \in W$ with $a, b \in U$.
3. $I \leftarrow M \cap W$, $M \leftarrow M \setminus W$.
4. Exhaust greedy contractions and update I, C accordingly.
5. **while** T/I has more than one node **do**
6. **Find** T', I' as in Lemma 3.
 Case 1: $|C'| = 0$ and either: $|M'| = 0$ or $|M'| = 1, |U'| \geq 2$
 $y_{T'} \leftarrow \rho - 1$
 $y_v \leftarrow \rho - 1$ if $v \in U'$ and $y_v \leftarrow 0$ if $v \in L' \setminus U'$.
 Case 2: $|C'| = 0$ and $|M'| = |U'| = 1$ (so $T' \in N$)
 $q_{T'} \leftarrow \rho - 1$.
7. Contract T' with I'.
9. return I
Note that every compound node v of T/I is obtained by contracting some (not necessarily rooted) subtree T' of T, and that every compound leaf v of T/I is obtained by contracting a rooted subtree of T. Thus in the algorithm, assigning value y_v to a compound leaf v of T/I means that we assign value y_v to the subtree that was contracted into v. During the algorithm, every non-zero dual variable corresponds to some node v of T/I; if v is an original leaf then this variable is y_v, and if v is a compound node then these are the variables of subtrees contracted into v. This is so since in the “while” loop of the algorithm, immediately after some dual variable is raised, the entire subtree corresponding to this variable is contracted into a compound node.

Definition 8. During the algorithm, the dual load $\mu(e)$ of a link e is defined as the sum of the dual variables in the constraint of e in the dual program, namely

$$
\mu(e) = y(\delta^{-1}(e)) + z(\sigma^{-1}(e)) - |\{x\} \cap W| z_c + q(\zeta^{-1}(e)).
$$

The dual credit $\pi(v)$ of a node v is defined as follows. Let $\pi(v)$ be the sum of the dual variables y and q that correspond to v minus the number of links used by the algorithm to contract the corresponding tree into v. Then $\pi(v) = \pi'(v)$ if v does not contain r, and $\pi(v) = \pi'(v) + 1$ otherwise.

Note that the dual load of a link $e = uv$ can be written as a sum of two parts $\mu(e) = \mu_u(e) + \mu_v(e)$ where: $\mu_u(e)$ is the sum of the dual variables associated with v that contribute to $\mu(e)$, and $\mu_v(e)$ is the sum of the dual variables associated with u that contribute to $\mu(e)$.

Lemma 4. At the end of step 3 of the algorithm, and then at the end of every iteration in the “while” loop, the following holds.

(i) If a link e has exactly one endnode in a node v of T/I, then $\mu_u(e) \leq 1$, and $\mu_v(e) \leq \rho - 1$ unless the original endnode of e contained in v is an original unmatched leaf. If e has both endnodes in a compound node v then $\mu(e) \leq \rho$.

(ii) If $\rho \geq 1.75$ then $\pi(v) \geq 1$ for any $v \in C \cup U$.

Proof. It is easy to see that the statement holds at the end of step 3 of the algorithm. We will prove by induction on the number of contraction steps that the statement continues to hold during the algorithm. For that, let us consider various operations performed by the algorithm.

Let us consider the greedy contraction operation. Then (i) continues to hold since greedy contractions do not change the dual variables. Suppose that a link uv was contracted into a compound node c, where u, v are leaves of T/I. By the induction hypothesis, $\pi(u), \pi(v) \geq 1$. Thus $\pi(c) \geq \pi(u) + \pi(v) - 1 \geq 1$, and hence (ii) continues to hold as well.

The other operation is contracting a semi-closed tree T' with I' into a new compound node c. The easy case is when $|C'| \geq 1$ or $|M'| \geq 2$. Then (i) continues to hold since in this case we do not change the dual variables. Also (ii) holds for c, since in this case

$$
\pi(c) \geq (\pi(C') + 2(\rho - 1)|M'| + |U'|) - (|M'| + |U'|) \geq \pi(C') + |M'|/2 \geq 1.
$$

Now we consider the more complicated cases 1 and 2 in the “while” loop.
Case 1: $|C'| = 0$ and either $|M'| = 0$ or $|M'| = 1, |U'| \geq 2$.
Recall that in this case we zero the dual variables of the endnodes of the link in M', if any, raise the dual variables of the unmatched leaves by $\rho - 1$, and raise the dual variable y_T, of T' from 0 to $\rho - 1$. Let $e = uv$ be a link and consider two cases.

If e has exactly one endnode in T', say v, then v is not an unmatched leaf of T', since T' is semi-closed. Thus since $C' = \emptyset$, $\mu_v(e) = 0$ after changing the dual variables, and $\mu_v(e) = \rho - 1$ after we contract T' into c. Hence (i) holds for e.

Suppose that e has both endnodes in T'. Then the dual load of e can only decrease, unless one endnode of e, say v, is an unmatched leaf of T'. Note that then the other endnode of e is not an unmatched leaf, since T' has no greedy contraction. Before we change the dual variables, we have $\mu_v(e) \leq 1$, by the induction hypothesis. After we change the dual variables, $\mu_v(e) = 0$ (since T' is semi-closed, and since we zero the dual variables of the endnodes of the link in M'). Hence at the end of the operation we have $\mu(e) \leq \rho$, and e enters the new compound node c, so (i) continues to hold.

Now we show that (ii) holds for the new compound node c. Note that

$$
\pi(c) \geq (y_T + \pi(U') + (\rho - 1)|U'| - (|M'| + |U'|)
\geq (\rho - 1) + |U'| + (\rho - 1)|U'| - |M'| - |U'|
= (\rho - 1)(|U'| + 1) - |M'|
$$

If $|M'| = 0$ then we get $\pi(c) \geq 2(\rho - 1) = 1.5$. If $|M'| = 1$ and $|U'| \geq 2$ then we get $\pi(c) \geq 3(\rho - 1) - 1 = 1.25$. In both cases, (ii) continues to hold for c.

Case 2: $|C'| = 0$ and $|M'| = |U'| = 1$ (T' is locking non-dangerous).
In this case we only raise the dual variable q_T to $\rho - 1$, and it is easy to verify that (i) continues to hold in this case. To see that (ii) continues to hold for the new compound node c note that

$$
\pi(c) \geq (q_T + \pi(U') + 2(\rho - 1)|M'|) - (|M'| + |U'|)
\geq (\rho - 1) + 1 + 2(\rho - 1) - 2
= 3(\rho - 1) - 1 = 1.25
$$

This concludes the proof of the lemma. \(\square\)

The above lemma implies that at the end of the algorithm, the dual solution (y, z, q) violates the dual constraints by a factor of ρ, and thus $(y, z, q)/\rho$ is a feasible solution to the dual program. Hence by the Weak Duality Theorem, $y(E) + q(T) \leq \rho \tau$, where τ is the optimal LP value. If $\rho \geq 1.75$, then the unique compound node (that contains τ) has dual credit at least 1, and thus our dual solution fully pays for the links added, namely, $y(E) + q(T) \geq |I|$. Consequently, for $\rho = 1.75$ we get $|I| \leq y(E) + q(T) \leq \rho \tau$, as required.
5 Primal-fitting analysis of Algorithm 2 (Theorem 2)

5.1 Reduction to the minimum weight leaf edge-cover problem

Let Π be the polyhedron defined by the constraints of (LP1), namely:

$$
\begin{align*}
 x_e & \geq 0 & \forall e \in E \\
 x(\delta(T')) & \geq 1 & \forall T' \in T \\
 x(\sigma(s_e)) - x_e & \geq 0 & \forall e \in W \\
 x(\delta(v)) & = 1 & \forall v \in L \\
 x(\delta(A, V)) & \geq \lceil |A \cap L|/2 \rceil & \forall A \in O_L
\end{align*}
$$

Let $\tau = \min\{x(E) : x \in \Pi\}$ be the optimal value of (LP2). Let $R = V \setminus (L \cup S)$. Let $\rho \geq 1.5$ be a parameter set later to $\rho = 7/4$. Recall the weight function w on $E(L, V)$ defined at step 2 of Algorithm 2:

$$
w_e = \begin{cases}
\rho & \text{if } e \in \delta(L, L) \setminus W \\
\rho - \frac{1}{2} & \text{if } e \in \delta(L, V \setminus L) \\
\rho + \frac{1}{2} & \text{if } e \in W
\end{cases}
$$

Lemma 5. Let F_L be a minimum w-weight exact edge-cover of L and $x \in \Pi$ such that $x(E) = \tau$. Then:

$$
\rho \tau \geq w(F_L) + \frac{1}{2} \sum_{v \in R} x(\delta(v))
$$

Proof. Let Π_L be the polyhedron defined by the constraints (1), (5), and (6). Then Π_L is the convex hull of the exact edge-covers of L, see [20, Theorem 34.2]. Let x' be defined by $x'_e = x_e$ if $e \in \delta(L, V)$ and $x'_e = 0$ otherwise. Note that $x' \in \Pi_L$, since x satisfies (1), (5), and (6). Since F_L is an optimal (integral) exact cover of L with respect to the weights w_e and $x' \in \Pi_L$, we have:

$$
x' \cdot w \geq w(F_L)
$$

Assign ρx_e tokens to every $e \in E$. The total amount of tokens is exactly $\rho x(E) = \rho \tau$. We will show that these tokens can be moved around such that the following holds:

(i) Every $e \in \delta(L, L)$, and thus every $e \in W$, keeps its initial ρx_e tokens.
(ii) Every $e \in \delta(L, V \setminus L)$ keeps $(\rho - \frac{1}{2})x_e$ tokens from its initial ρx_e tokens.
(iii) Every $v \in R$ gets $\frac{1}{2}x_e$ token for each $e \in \delta(v)$.
(iv) Every $e \in W$ gets additional $\frac{1}{2}x_e$ token, to a total of $(\rho + \frac{1}{2})x_e$ tokens.

This distribution of tokens is achieved in two steps. In the first step, for every $e \in E$, move $\frac{1}{2}x_e$ token from the ρx_e tokens of e to each non-leaf endnode of e, if any. Note that after this step, (i), (ii), and (iii) hold. In the second step, every $e \in W$ gets $\frac{1}{2}x(\sigma(s_e))$ tokens moved at the first step to its stem s_e by the links in $\sigma(s_e)$. The amount of such tokens is at least $\frac{1}{2}x_e$, by (3). This gives an assignment of tokens as claimed.

To prove Theorem 2 we prove the following.

Theorem 3. For $\rho = 7/4$, Algorithm 2 computes a solution I of size at most the right-hand size of (7). Thus $|I| \leq \rho \tau = \frac{7}{4}\tau$.

5.2 Analysis of the algorithm (Proof of Theorem 3)

Let \(M = \delta_{FL}(L, L) \) be the set of leaf-to-toe links in \(FL \) and \(U \) the set of leaves unmatched by \(M \). Then for \(\rho = 7/4 \) we have:

\[
w(FL) = \rho|M\setminus W| + \left(\rho - \frac{1}{2}\right)|U| + \left(\rho + \frac{1}{2}\right)|M\cap W| = \frac{7}{4}|M\setminus W| + \frac{5}{4}|U| + \frac{9}{4}|M\cap W|.
\]

Thus (7) implies:

\[
\rho \tau \geq \frac{7}{4}|M\setminus W| + \frac{5}{4}|U| + \frac{9}{4}|M\cap W| + \frac{1}{2} \sum_{v \in R} x(\delta(v)). \tag{8}
\]

For the analysis, we will assign tokens to nodes and edges of \(T \) according to the r.h.s. of (8), plus 1 extra token to (the compound node) \(r \). Each time a contraction is performed (lines 3, 4, 7, 8 in Algorithm 2), we assign 1 token to the compound node that results from the contraction. For example, every link \(e \in M \cap W \) own \(9/4 \) tokens, and when it is added to the partial solution \(I \) at step 3 of Algorithm 2, these \(9/4 \) tokens pay both for the link addition and for the token assigned to the resulting compound node of \(T/I \) (and a spare of \(1/4 \) token remains). After all links in \(M \cap W \) are moved from \(M \) to \(I \), we maintain the following invariant for the tree \(T/I \) and for links in \(M \) and nodes in \(R \) that are not yet contracted into compound nodes.

Tokens Invariant.

(i) Every \(e \in M \setminus W \) owns \(\rho = \frac{7}{4} \) tokens.

(ii) Every non-compound leaf unmatched by \(M \) owns \(\rho - \frac{1}{2} = \frac{5}{4} \) tokens.

(iv) Every \(v \in R \) owns \(\frac{1}{2} x(\delta(v)) \) tokens.

(iii) Every compound node owns 1 token.

For a subtree \(T' \) of \(T/I \) let us use the following notation:

- \(M' \) is the set of (not yet contracted) links in \(M \) with both endnodes in \(T' \).
- \(U' \) is the set of leaves of \(T' \) unmatched by \(M \).
- \(U_0' \) is the set of original (non-compound) leaves of \(T' \) unmatched by \(M \).
- \(C' \) is the set of non-leaf compound nodes of \(T' \) (this includes \(r \), if \(r \in T' \)).
- \(R' \) is the set of (not yet contracted) nodes in \(R \) that belong to \(T' \).
- \(\Sigma' = \sum_{v \in R'} x(\delta(v)) \)

Let tokens\((T')\) denote the amount of tokens in \(T' \); this includes the tokens on nodes of \(T' \) and tokens of links in \(M \) with both endnodes in \(T' \), namely:

\[
tokens(T') = \frac{7}{4}|M'| + |C'| + |U'| - |U_0'| + \frac{5}{4}|U_0'| + \frac{1}{2} \Sigma'
\]

\[
= \frac{7}{4}|M'| + |U'| + \frac{1}{4}|U_0'| + \frac{1}{2} \Sigma' + |C'|
\]

If we require not to overspend the credit provided by (8), then each time we contract \(T' \) with \(I' \) we need the following property.
Definition 9. A contraction of T' with I' is legal if $\text{tokens}(T') \geq |I'| + 1$.

This means that the set I' of links added to I and the 1 token assigned to the new compound node are paid by the total amount of tokens in T'. We do only legal contractions, which implies that at any step of the algorithm

$$|I| + \text{tokens}(T/I) \leq \text{tokens}(T).$$

Thus at the last iteration, when T/I becomes a single compound node, $|I|$ is at most the right-hand side of (8).

Recall that after step 3, we have only two types of contractions of T' with I': a greedy contraction of a path by a single link between two unmatched leaves, and a contraction of a semi-closed tree with a link set of size $|I'| = |M'| + |U'|$. In the case of a greedy contraction, $\text{tokens}(T') \geq |U'| = 2$ while $|I'| = 1$; thus this contraction is legal. For a semi-closed subtree T' of T/I, we prove the following.

Lemma 6. Suppose that the Partial Solution Invariant and the Tokens Invariant hold for T, M, and I, and that T/I has no greedy contraction. Then $\text{tokens}(T') \geq |M'| + |U'| + 1$ holds for any non-dangerous semi-closed subtree T' of T/I.

5.3 Proof of Lemma 6

Let T' be a semi-closed subtree of T/I w.r.t. M with root r' and node set V'. Assume that $\text{tokens}(T') - (|M'| + |U'|) < 1$. We will show that T' is dangerous. Note that by the Tokens Invariant:

$$\text{tokens}(T') - (|M'| + |U'|) = \frac{3}{4} |M'| + \frac{1}{4} |U'_0| + \frac{1}{2} |\Sigma'| + |C'| = \frac{1}{4} (3|M'| + |U'_0| + 2|\Sigma'| + |C'|)$$

Since we assume that $\text{tokens}(T') - (|M'| + |U'|) < 1$, this immediately implies:

Lemma 7. $|C'| = 0$ and $3|M'| + |U'_0| + 2|\Sigma'| < 4$; thus $|M'| \leq 1$, and if $|M'| = 1$ then $|U'_0| = 0$ and $|\Sigma'| < 1/2$.

Let us use the following additional notation:

- L' is the set of leaves of T'.
- S' is the set of (the original) stems of T'.

Lemma 8. $|S'| = 0$.

Proof. Note that the Partial Solution Invariant implies that every stem s in T/I has exactly two leaf descendants, and they are both original leaves. Let a, b be the two leaf descendants of s, so a, b are original leaves and ab is a twin link. Since $ab \in W$, $ab \notin M'$. From the assumption that that T/I has no link greedy contraction we get that one of a, b is matched by M, as otherwise ab gives a greedy contraction. Moreover, $|M' \cap W| = 0$ and $|M'| \leq 1$ implies that $|M'| = 1$ and exactly one of a, b is matched by M. Consequently, $|M'| = |U'_0| = 1$, contradicting Lemma 7. \qed
Lemma 9. \(\Sigma' \geq |U'| + 1 - 2|M'|. \)

Proof. Note that no link has both endnodes in \(U' \) (since \(T/I \) has no greedy contraction), and that \(\delta(U') \cap \delta(T') = \emptyset \) (since \(T' \) is \(U' \)-closed). Thus
\[
x(\delta(U') \cup \delta(T')) = \sum_{v \in U'} x(\delta(v)) + x(\delta(T')) \geq |U'| + 1.
\]
Let \(e \in \delta(U') \). Then \(e \) contributes \(x_e \) to \(\Sigma' \), unless \(e \) is incident to a matched leaf. However, \(x(\delta(b)) = 1 \) for every matched leaf \(b \), and the number of matched leaves in \(T' \) is exactly \(2|M'|. \) Hence \(\Sigma' \geq |U'| + 1 - 2|M'|, \) as claimed. \(\square \)

Lemma 10. If \(|M'| = 1 \) then \(|U'| = 1. \)

Proof. If \(|U'| \geq 2 \) then Lemma 9 gives the contradiction \(\Sigma' \geq 1. \) Suppose that \(|U'| = 0. \) Then \(|L'| = 2, \) say \(L' = \{b,b'\} \), and so \(M' = \{bb'\} \), since \(|M'| = 1. \) Consequently, the contraction of \(bb' \) creates a new leaf. We obtain a contradiction by showing that then the path between \(b \) and \(b' \) in \(T/I \) has an internal compound node. By the Partial Solution Invariant \(b, b' \) are original leaves. Note that in the original tree \(T \) the contraction of \(bb' \) does not create a new leaf, since \(bb' \notin W. \) This implies that in \(T \), there is a subtree \(\hat{T} \) of \(T \) hanging out of a node \(z \) on the path between \(b \) and \(b' \) in \(T \). This subtree \(\hat{T} \) is not present in \(T/I \), hence it was contracted into a compound node during the construction of our partial solution \(\mathcal{I}. \) Thus \(T/I \) has a compound node \(\hat{z} \) that contains \(\hat{T}, \) and since \(\hat{z} \) contains a node \(z \) that belongs to the path between \(b \) and \(b' \) in \(T \), the compound node of \(T/I \) that contains \(z \) belongs to the path between \(b \) and \(b' \) in \(T/I \). \(\square \)

Corollary 1. \(|C'| = |S'| = |U'_0| = 0, |M'| = |U'| = 1 (\text{thus } T' \text{ has 3 leaves}), \) and \(\Sigma' < 1/2. \)

Proof. We have \(|C'| = 0 \) and \(|M'| \leq 1 \) by Lemma 7 and \(|S'| = 0 \) by Lemma 8. If \(|M'| = 0 \) then from Lemma 9 we get that \(\Sigma' \geq 2, \) contradicting Lemma 7. Thus \(|M'| = 1 \) and by Lemmas 7 and 10 we have \(\Sigma' < 1/2, |U'| = 1, \) and \(|U'_0| = 0. \) \(\square \)

We now use the properties of \(T' \) summarized in Corollary 1 to show that \(T' \) must be dangerous. Let \(bb' \) be the matched pair and \(a \) the unmatched (compound) leaf of \(T' \). Let \(u \) and \(u' \) be the least common ancestor of \(ab \) and \(ab' \), respectively, and assume w.l.o.g., that \(u \) is a descendant of \(u' \) (see Fig. 2, and note that \(u = u' \) or/and \(u' = r' \) may hold). Let \(x_{ab} = \alpha, x_{bb'} = \beta, x_{ab'} = \gamma, x(\delta(b,T \setminus T')) = \epsilon, \) and \(x(\delta(b',T \setminus T')) = \theta. \)

Lemma 11. \(\alpha, \beta > 0 \) or \(\gamma, \epsilon > 0; \) if \(u \neq u' \) then \(\gamma, \epsilon > 0. \)

Proof. Consider the contribution to \(\Sigma' \) of links in cuts \(\delta(a) \) and \(\delta(T_{uv})\):
\begin{enumerate}
 \item[(i)] Cut \(\delta(a): \frac{1}{2} > \Sigma' \geq x(\delta(a)) - (\alpha + \gamma) \geq 1 - (\alpha + \gamma); \) hence \(\alpha + \gamma > \frac{1}{2}. \)
 \item[(ii)] Cut \(\delta(T_{uv}): \frac{1}{2} > \Sigma' \geq x(\delta(T_{uv})) - (\theta + \epsilon) \geq 1 - (\theta + \epsilon); \) hence \(\theta + \epsilon > \frac{1}{2}. \)
\end{enumerate}
In particular, we cannot have \(\alpha, \gamma = 0 \) or \(\theta, \epsilon = 0 \). We show that each one of the cases \(\alpha, \epsilon = 0 \) or \(\gamma, \theta = 0 \) is also not possible.

If \(\alpha, \epsilon = 0 \) then \(\gamma, \theta > \frac{1}{2} \), giving the contradiction \(1 = x(\delta(b')) \geq \gamma + \theta > 1 \).

If \(\gamma, \theta = 0 \) then \(\alpha, \epsilon > \frac{1}{2} \), giving the contradiction \(1 = x(\delta(b)) \geq \alpha + \epsilon > 1 \).

Now let us consider the case \(u \neq u' \). Then by considering the cut \(\delta(T_u) \) we get: \(1/2 > \Sigma' \geq x(\delta(T_u)) - (\beta + \gamma + \epsilon) \geq 1 - (\beta + \gamma + \epsilon) \); hence \(\beta + \gamma + \epsilon > 1/2 \).

If \(\gamma = 0 \) then \(\beta + \epsilon > 1/2 \), and \(\alpha > 1/2 \) by (i); by considering the cut \(\delta(b) \) we get the contradiction \(1 = x(\delta(b)) \geq \alpha + \beta + \epsilon > 1/2 + 1/2 = 1 \).

If \(\epsilon = 0 \) then \(\beta + \gamma > 1/2 \), and \(\theta > 1/2 \) by (ii); by considering the cut \(\delta(b') \) we get the contradiction \(1 = x(\delta(b')) \geq \beta + \gamma + \theta > 1/2 + 1/2 = 1 \).

Lemma 11 implies that \(T' \) is dangerous. Indeed, if \(u \neq u' \), then \(\gamma > 0 \) implies that the link \(ab' \) exists, and \(\epsilon > 0 \) implies that \(T' \) is \(b \)-open. Thus, by the definition, \(T' \) is dangerous. The same holds if \(u = u' \) and \(\gamma, \epsilon > 0 \). If \(u = u' \) and \(\alpha, \theta > 0 \), then \(ab \) exists (since \(\alpha > 0 \)) and \(T' \) is \(b' \)-open (since \(\theta > 0 \)); thus by exchanging the roles of \(b, b' \) we get that \(T' \) is dangerous, by the definition.

This concludes the proof of Lemma 6.

References

