Approximating Graph Spanners

Michael Dinitz
Johns Hopkins University

Joint work with combinations of Robert Krauthgamer (Weizmann), Eden Chlamtác (Ben Gurion), Ran Raz (Weizmann), Guy Kortsarz (Rutgers-Camden)
Graph Spanners
Graph Spanners

- Graph $G = (V, E)$
Graph Spanners

- Graph $G = (V, E)$
- Can we “compress” the graph while preserving distances?
Graph Spanners

- Graph $G = (V, E)$
- Can we “compress” the graph while preserving distances?
- k-spanner: subgraph G' in which

$$d_{G'}(u, v) \leq k \times d_G(u, v)$$

for all $u, v \in V$
Graph Spanners

- Graph $G = (V, E)$
- Can we “compress” the graph while preserving distances?
- k-spanner: subgraph G' in which

$$d_{G'}(u,v) \leq k \times d_G(u,v)$$

for all $u,v \in V$
Graph Spanners

• Graph $G = (V, E)$

• Can we “compress” the graph while preserving distances?

• k-spanner: subgraph G' in which

$$d_{G'}(u,v) \leq k \times d_{G}(u,v)$$

for all $u,v \in V$
History

• First developed in late 80’s for distributed computing: Peleg-Schaffer ’89, Peleg-Ullman ’89

• Many applications:
 • Distance oracles / compact routing
 • Property testing
 • Preprocessing approximation algorithms
 • Maximizing influence spread in social networks
 • Biomedical image segmentation

• Many papers
Theorem [ADDJS ’93]: For all $k \geq 1$, every graph G has a $(2k-1)$-spanner with at most $n^{1+1/k}$ edges.
Fundamental Tradeoff

Theorem [ADDJS ’93]: For all $k \geq 1$, every graph G has a $(2k-1)$-spanner with at most $n^{1+1/k}$ edges.

- Very simple greedy algorithm
- Tight (assuming Erdős girth conjecture)
- Lots of followup work extending tradeoff to weight, diameter, hop count, … and proving stronger/different tradeoffs for special classes
What Else?
What Else?

- Great! Tradeoff means applications using spanners can always find sparse spanners
What Else?

• Great! Tradeoff means applications using spanners can always find sparse spanners

• Not so fast…
What Else?

• Great! Tradeoff means applications using spanners can always find sparse spanners

• Not so fast…
 • Tradeoffs don’t always exist (2-spanner, directed, max degree)
What Else?

- Great! Tradeoff means applications using spanners can always find sparse spanners

- Not so fast…
 - Tradeoffs don’t always exist (2-spanner, directed, max degree)
 - Even if they do, still want to find best spanner
Optimization
Optimization

- Given graph G and value k, can we find the best k-spanner?
Optimization

• Given graph G and value k, can we find the best k-spanner?

• “Best”:
 • Minimum number of edges
 • Minimum total weight
 • Minimum max degree
 • …
Optimization

• Given graph G and value k, can we find the best k-spanner?

• “Best”:
 • Minimum number of edges
 • Minimum total weight
 • Minimum max degree
 • …

• This talk: some results, some open questions
 • Still much to do!
Basic k-Spanner
Basic k-Spanner

- Most basic version: given undirected G, integer k, find k-spanner with minimum # edges
Basic k-Spanner

- Most basic version: given undirected G, integer k, find k-spanner with minimum # edges
 - $k = 2$: Tight $O(\log n)$-approximation [Kortsarz-Peleg ’92]
 - $k \geq 3$: Basic tradeoff gives $O(n^{2/(k+1)})$-approximation (odd k) or $O(n^{2/k})$-approximation (even k)
 - $k = 3$: $\tilde{O}(n^{1/3})$-approximation [BBMRY ’11]
Basic k-Spanner

- Most basic version: given undirected G, integer k, find k-spanner with minimum # edges
 - $k = 2$: Tight $O(\log n)$-approximation [Kortsarz-Peleg ’92]
 - $k \geq 3$: Basic tradeoff gives $O(n^{2/(k+1)})$-approximation (odd k) or $O(n^{2/k})$-approximation (even k)
 - $k = 3$: $\tilde{O}(n^{1/3})$-approximation [BBMRY ’11]

- Open Question: is it possible to beat the ADDJS bound for stretch values larger than 3?
Strong Hardness

- Can we hope for an $O(\log n)$-approx?
Strong Hardness

• Can we hope for an $O(\log n)$-approx?

Theorem [D-Kortsarz-Raz ICALP’12]:

There is no polynomial-time algorithm that can approximate Basic k-Spanner better than $2^{(\log n)^{(1-\varepsilon) / k}}$ unless $NP \subseteq BPTIME(n^{polylog(n)})$.

Techniques for Hardness
Techniques for Hardness

- [Elkin-Peleg ICALP’00] framework: Label Cover \rightarrow Label Cover with girth $\geq k$ \rightarrow Basic k-Spanner
Techniques for Hardness

• [Elkin-Peleg ICALP’00] framework: Label Cover \rightarrow Label Cover with girth $\geq k$ \rightarrow Basic k-Spanner

• Second reduction straightforward: how to do first?
Techniques for Hardness

- [Elkin-Peleg ICALP’00] framework: Label Cover \rightarrow Label Cover with girth $\geq k$ \rightarrow Basic k-Spanner

- Second reduction straightforward: how to do first?

- Key idea: random subsampling
Techniques for Hardness

- [Elkin-Peleg ICALP’00] framework:
 Label Cover → Label Cover with girth $\geq k$ → Basic k-Spanner

- Second reduction straightforward: how to do first?

- Key idea: random subsampling
Techniques for Hardness

• [Elkin-Peleg ICALP’00] framework: Label Cover \rightarrow Label Cover with girth $\geq k$ \rightarrow Basic k-Spanner

• Second reduction straightforward: how to do first?

• Key idea: random subsampling

• Takeaway: hardness \approx degree
 • “Improvement” over parallel repetition: apply repetition, then sample
 • Same hardness, smaller degree/fewer edges
Directed Spanners
Directed Spanners

• No tradeoff possible
Directed Spanners

- No tradeoff possible
- Hard to approximate better than $2^{(\log n)^{1-\epsilon}}$ [Elkin-Peleg STACS’00]
Directed Spanners

• No tradeoff possible

• Hard to approximate better than $2^{(\log n)^{\frac{1}{1-\varepsilon}}}$ [Elkin-Peleg STACS’00]

• Upper bounds:
 • $\tilde{O}(n^{1-1/k})$ [BGJRW SODA’09]
 • $\tilde{O}(n^{2/3})$ [D-Krauthgamer STOC’11]
 • $\tilde{O}(n^{1/2})$ [BBMRY ICALP’11]
Directed Spanners

- No tradeoff possible

- Hard to approximate better than $2^{(\log n)^{(1-\varepsilon)}}$ [Elkin-Peleg STACS’00]

- Upper bounds:
 - $\tilde{O}(n^{1-1/k})$ [BGJRW SODA’09]
 - $\tilde{O}(n^{2/3})$ [D-Krauthgamer STOC’11]
 - $\tilde{O}(n^{1/2})$ [BBMRY ICALP’11]
 - Stretch 3: $\tilde{O}(n^{1/2})$ [DK STOC’11], $\tilde{O}(n^{1/3})$ [BBMRY ICALP’11]
High-Level Framework [BGJRW '09]

\[k=3 \]

\[u \]

\[v \]
High-Level Framework [BGJRW ’09]

- $N(u,v) = \{w : \exists \text{ stretch-}k \ u-v \ \text{path containing } w\}$
High-Level Framework [BGJRW ’09]

\[N(u,v) = \{ w : \exists \text{ stretch-}k \ u-v \ \text{path containing} \ w \} \]
High-Level Framework [BGJRW ’09]

\[
N(u,v) = \{ w : \exists \text{ stretch-}k \ u-v \ \text{path containing } w \}
\]
High-Level Framework [BGJRW ’09]

\[N(u,v) = \{ w : \exists \text{ stretch-}k \text{ } u-v \text{ path containing } w \} \]

- Two algorithms: one for small \(|N(u,v)|\), one for large
Small $|N(u,v)|$
Small $|N(u,v)|$

• Linear Program [DK ’11]:
Small $|N(u,v)|$

- Linear Program [DK ’11]:

$$\begin{align*}
\min \quad & \sum_{e \in E} x_e \\
\text{s.t.} \quad & \sum_{P \in \mathcal{P}_{u,v}, e \in P} f_P \leq x_e \quad \forall (u, v) \in E, \forall e \in E \\
& \sum_{P \in \mathcal{P}_{u,v}} f_P \geq 1 \quad \forall (u, v) \in E \\
& x_e \geq 0 \quad \forall e \in E \\
& f_P \geq 0 \quad \forall (u, v) \in E, \forall P \in \mathcal{P}_{u,v}
\end{align*}$$
Small $|N(u,v)|$

- Linear Program [DK ’11]:

$$\begin{align*}
\min & \sum_{e \in E} x_e \\
\text{s.t.} & \sum_{P \in \mathcal{P}_{u,v} : e \in P} f_P \leq x_e \quad \forall (u, v) \in E, \forall e \in E \\
& \sum_{P \in \mathcal{P}_{u,v}} f_P \geq 1 \quad \forall (u, v) \in E \\
& x_e \geq 0 \quad \forall e \in E \\
& f_P \geq 0 \quad \forall (u, v) \in E, \forall P \in \mathcal{P}_{u,v}
\end{align*}$$

Stretch k u-v paths
Small $|N(u,v)|$

• Linear Program [DK ’11]:

$$\min \sum_{e \in E} x_e$$

subject to:

$$\sum_{P \in \mathcal{P}_{u,v}, e \in P} f_P \leq x_e \quad \forall (u, v) \in E, \forall e \in E$$

$$\sum_{P \in \mathcal{P}_{u,v}} f_P \geq 1 \quad \forall (u, v) \in E$$

$$x_e \geq 0 \quad \forall e \in E$$

$$f_P \geq 0 \quad \forall (u, v) \in E, \forall P \in \mathcal{P}_{u,v}$$

• Take e with probability t^*x_e [BBRMY ’11]: spans all (u,v) where $|N(u,v)| \leq t$

 • Analysis: union over all “cuts”
Small $|N(u,v)|$

- **Linear Program [DK ’11]:**

 $$\min \sum_{e \in E} x_e$$

 s.t. $$\sum_{P \in \mathcal{P}_{u,v; e \in P}} f_P \leq x_e \quad \forall (u, v) \in E, \forall e \in E$$

 $$\sum_{P \in \mathcal{P}_{u,v}} f_P \geq 1 \quad \forall (u, v) \in E$$

 $$x_e \geq 0 \quad \forall e \in E$$

 $$f_P \geq 0 \quad \forall (u, v) \in E, \forall P \in \mathcal{P}_{u,v}$$

- **Take e with probability $t^* x_e$ [BBRMY ’11]:** spans all (u,v) where $|N(u,v)| \leq t$
 - Analysis: union over all “cuts”
 - Improves over threshold rounding [DK ’11]
Large $|N(u,v)|$
Large $|N(u,v)|$

- β times: randomly choose w, build shortest-path in- and out-arborescences
 - If $w \in N(u,v)$ we win
Large $|N(u,v)|$

- β times: randomly choose w, build shortest-path in- and out-arborescences
 - If $w \in N(u,v)$ we win
Large $|N(u,v)|$

- β times: randomly choose w, build shortest-path in- and out-arborescences
 - If $w \in N(u,v)$ we win
Large $|N(u,v)|$

- β times: randomly choose w, build shortest-path in- and out-arborescences
 - If $w \in N(u,v)$ we win
Large $|N(u,v)|$

- β times: randomly choose w, build shortest-path in- and out-arborescences
 - If $w \in N(u,v)$ we win
- If $|N(u,v)| \leq n/\beta$, span (u,v) w.h.p.
Large $|N(u,v)|$

- β times: randomly choose w, build shortest-path in- and out-arborescences
 - If $w \in N(u,v)$ we win
 - If $|N(u,v)| \leq n/\beta$, span (u,v) w.h.p.
 - Cost at most $\beta \times 2n \leq O(\beta \times OPT)$
Combined
Combined

• Tradeoff between LP rounding and arborescence sampling: rounding for $|N(u,v)| \leq \sqrt{n}$, arborescence sampling for $|N(u,v)| \geq \sqrt{n}$

• $\tilde{O}(n^{1/2})$-approx
Combined

- Tradeoff between LP rounding and arborescence sampling: rounding for $|N(u, v)| \leq \sqrt{n}$, arborescence sampling for $|N(u, v)| \geq \sqrt{n}$

- $\tilde{O}(n^{1/2})$-approx

- Stretch 3: LP rounding to handle $|N(u, v)| \leq t$ with cost only $O(t^{1/2})$
 - $O(n^{1/2})$ by $t=n$ (without arborescence sampling) [DK ’11]
 - $O(n^{1/3})$ with arborescence sampling [BBMRY ’11]
Open Questions

• Improved bounds?

• Arborescence sampling is terrible!
 • Uses a trivial lower bound on OPT
 • Can’t handle weights, not as flexible as LP
 • Any way to remove/reduce use of arborescence sampling?

• Back to undirected k-spanner:
 • Directed 3-spanner approx also best for undirected
 • Any way to use LP for larger stretch?
Fault Tolerance
Fault Tolerance
Fault Tolerance
Fault Tolerance
Fault Tolerance

• Def [CLPR STOC’09]: H is an f-fault-tolerant k-spanner if $H - F$ is a k-spanner of $G - F$ for all $F \subseteq V$ with $|F| \leq f$
Fault Tolerance

- Def [CLPR STOC’09]: H is an f-fault-tolerant k-spanner if $H - F$ is a k-spanner of $G - F$ for all $F \subseteq V$ with $|F| \leq f$

- Note: might not be particularly well connected!
 - k-spanner relative to $G - F$, not G
 - If G a tree, $H = G$ is n-fault tolerant
Fault Tolerance

- Def [CLPR STOC’09]: \(H \) is an \(f \)-fault-tolerant \(k \)-spanner if \(H - F \) is a \(k \)-spanner of \(G - F \) for all \(F \subseteq V \) with \(|F| \leq f\)

- Note: might not be particularly well connected!
 - \(k \)-spanner relative to \(G - F \), not \(G \)
 - If \(G \) a tree, \(H = G \) is \(n \)-fault tolerant

- Reasonable: can’t be more fault-tolerant than \(G \)
Fault Tolerance: State of the Art

Theorem [D-Krauthgamer PODC’11]:
For every k, f, every graph G admits an f-fault tolerant $(2k-1)$-spanner with $O(f^2 n^{1+1/k})$ edges
Fault Tolerance: State of the Art

Theorem [D-Krauthgamer PODC’11]: For every k, f, every graph G admits an f-fault tolerant $(2k-1)$-spanner with $O(f^2 n^{1+1/k})$ edges

- f^2 times:
 - Sample each node with probability $1/f$
 - Build $(2k-1)$-spanner of size at most $n^{1+1/k}$ on sample
Fault Tolerance: State of the Art

Theorem [D-Krauthgamer PODC’11]: For every k, f, every graph G admits an f-fault tolerant $(2k-1)$-spanner with $O(f^2 n^{1+1/k})$ edges

- f^2 times:
 - Sample each node with probability $1/f$
 - Build $(2k-1)$-spanner of size at most $n^{1+1/k}$ on sample

- Very simple to analyze
Fault-Tolerant: Stretch 2
Fault-Tolerant: Stretch 2

- Non-fault tolerant: $O(\log n)$-approx [Kortsarz-Peleg JALG’94]
- f-fault tolerant:
 - $O(f \log n)$-approx [D-Krauthgamer STOC’11]
 - $O(\log n)$-approx [D-Krauthgamer PODC’11]
- Both based on rounding LP
Fault-Tolerant: Stretch 2

• Non-fault tolerant: $O(\log n)$-approx [Kortsarz-Peleg JALG’94]

• f-fault tolerant:
 • $O(f \log n)$-approx [D-Krauthgamer STOC’11]
 • $O(\log n)$-approx [D-Krauthgamer PODC’11]

• Both based on rounding LP

• Open Question: approximate f-fault-tolerant k-spanner with no dependence on f?
 • Tradeoff gives $O(f n^{1/k})$-approx
Maximum Degree
Maximum Degree

• Max degree instead of number of edges (average degree)
Maximum Degree

• Max degree instead of number of edges (average degree)

• No tradeoff:
Maximum Degree

• Max degree instead of number of edges (average degree)

• No tradeoff:

• Lowest Degree k-Spanner (LDkS): find k-spanner that minimizes maximum degree
LDkS vs Basic k-Spanner

- Very different, much more difficult!

- Stretch 2:
 - Basic 2-spanner: $O(\log n)$-approx [Kortsarz-Peleg TALG’94]
 - LD2S: $O(\Delta^{1/4})$-approx [Kortsarz-Peleg SICOMP’98]

- Larger stretch:
 - Basic k-Spanner: $O(n^{2/(k+1)})$-approx
 - LDkS: $\Omega(\log n)$ hardness
LDkS vs Basic k-Spanner

- Very different, much more difficult!

- Stretch 2:
 - Basic 2-spanner: $O(\log n)$-approx [Kortsarz-Peleg TALG’94]
 - LD2S: $O(\Delta^{1/4})$-approx [Kortsarz-Peleg SICOMP’98]

- Larger stretch:
 - Basic k-Spanner: $O(n^{2/(k+1)})$-approx
 - LDkS: $\Omega(\log n)$ hardness

$\Delta = \text{max degree}$
Our Results:

- **LD2S**: $\tilde{O}(\Delta^{3-2\sqrt{2}+\varepsilon}) \approx \tilde{O}(\Delta^{0.172})$-approx [Chlamtac-D-Krauthgamer FOCS’12]
 - Improvement over $O(\Delta^{1/4})$

- **LDkS**: $\tilde{O}(\Delta^{(1-1/k)^2})$-approx, $\Omega(\Delta^{1/k})$ hardness [Chlamtac-D APPROX’14]
 - Improvement over $\Omega(\log n)$ hardness
LD2S
LD2S

- Reduce to Smallest m-Edge Subgraph (SmES / min-DkS)
LD2S

• Reduce to Smallest m-Edge Subgraph (SmES / min-DkS)
LD2S

• Reduce to Smallest m-Edge Subgraph (SmES / min-DkS)
LD2S

• Reduce to Smallest m-Edge Subgraph (SmES / min-DkS)
LD2S

- Reduce to Smallest m-Edge Subgraph (SmES / min-DkS)
 - Not black box: LD2S LP contains n SmES LPs
 - Need special “faithful rounding” SmES algorithm
LD2S

- Reduce to Smallest m-Edge Subgraph (SmES / min-DkS)
 - Not black box: LD2S LP contains n SmES LPs
 - Need special “faithful rounding” SmES algorithm

- Improved algorithm for SmES using Sherali-Adams hierarchy
 - $O(n^{1/4})$ directly from DkS
 - SmES used in past, first time improvement over DkS shown
LDkS: Upper Bound

• Straightforward LP:

\[
\begin{align*}
\text{min} & \quad d \\
\text{s.t.} & \quad \sum_{(u,v) \in E} x_{(u,v)} \leq d \quad \forall u \in V \\
& \quad \sum_{P \in \mathcal{P}_{u,v}, e \in P} f_P \leq x_e \quad \forall (u, v) \in E, \forall e \in E \\
& \quad \sum_{P \in \mathcal{P}_{u,v}} f_P \geq 1 \quad \forall (u, v) \in E \\
& \quad x_e \geq 0 \quad \forall e \in E \\
& \quad f_P \geq 0 \quad \forall (u, v) \in E, \forall P \in \mathcal{P}_{u,v}
\end{align*}
\]
LDkS: Upper Bound

- **Straightforward LP:**
 \[
 \begin{align*}
 \min & \quad d \\
 \text{s.t.} & \quad \sum_{(u,v) \in E} x_{(u,v)} \leq d \quad \forall u \in V \\
 & \quad \sum_{P \in \mathcal{P}_{u,v}, e \in P} f_P \leq x_e \quad \forall (u, v) \in E, \forall e \in E \\
 & \quad \sum_{P \in \mathcal{P}_{u,v}} f_P \geq 1 \quad \forall (u, v) \in E \\
 & \quad x_e \geq 0 \quad \forall e \in E \\
 & \quad f_P \geq 0 \quad \forall (u, v) \in E, \forall P \in \mathcal{P}_{u,v}
 \end{align*}
 \]

- **Rounding:** include \(e \) with probability \(x_e^{1/k} \)
LDkS: Upper Bound

• Straightforward LP:

\[
\begin{align*}
\min & \quad d \\
\text{s.t.} & \quad \sum_{(u,v) \in E} x_{(u,v)} \leq d \quad \forall u \in V \\
& \quad \sum_{P \in \mathcal{P}_{u,v}, e \in P} f_P \leq x_e \quad \forall (u,v) \in E, \forall e \in E \\
& \quad \sum_{P \in \mathcal{P}_{u,v}} f_P \geq 1 \quad \forall (u,v) \in E \\
& \quad x_e \geq 0 \quad \forall e \in E \\
& \quad f_P \geq 0 \quad \forall (u,v) \in E, \forall P \in \mathcal{P}_{u,v}
\end{align*}
\]

• Rounding: include \(e \) with probability \(x_e^{1/k} \)

• Not hard to analyze cost: trick is proving rounded solution is a \(k \)-spanner
LDkS: Upper Bound (II)
LDkS: Upper Bound (II)
LDkS: Upper Bound (II)

- $\Pr[\text{get } u-w-v] = x_{\{u,w\}}^{1/2} x_{\{v,w\}}^{1/2} \geq f(u,w,v)$
LDKS: Upper Bound (II)

- \(\Pr[\text{get } u-w-v] = x_{\{u,w\}}^{1/2} x_{\{v,w\}}^{1/2} \geq f_{(u,w,v)} \)

- If paths disjoint, get each path independently so \(\Pr[\text{span } u-v] \geq 1 - \prod_w (1 - f_{(u,w,v)}) \geq 1 - 1/e \)
LDkS: Upper Bound (II)

- \[\Pr[\text{get } u\text{-}w\text{-}v] = x_{\{u,w\}}^{1/2} x_{\{v,w\}}^{1/2} \geq f_{(u,w,v)} \]

- If paths disjoint, get each path independently so \[\Pr[\text{span } u\text{-}v] \geq 1 - \prod_w (1 - f_{(u,w,v)}) \geq 1 - 1/e \]

- But for stretch > 2 paths not disjoint
 - Complicated bucketing of paths to argue lots of flow must be on nearly-disjoint paths
LDkS: Lower Bound

• Based on lower bound for Basic k-Spanner
 • Interlacing of sampling with reduction
 • Start with hard Label Cover instance, subsample edges, apply reduction, subsample edges

• Need girth of Label Cover graph and reduction graph to be larger than k
 • Leads to hardness that gets worse with k
LDkS: Open Question

• What is the right approximation?

• Upper bound $\tilde{O}(\Delta^{(1-1/k)^2})$ gets larger with k, lower bound $\Omega(\Delta^{1/k})$ gets smaller with k
Conclusion

• Tons of work on graph spanners, very little on optimizing/approximating spanners

• We know a fair amount, but still many very basic open questions
 • Beating trivial bound from tradeoff for basic k-spanner?
 • Is any dependence on f necessary for approximating fault-tolerant spanners?
 • Does Lowest Degree k-Spanner get easier or harder as k increases?
 • Approximating weight?
 • Approximating geometric spanners?
Thanks!

(Work on spanners with me!)