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Abstract

An emerging notion in systems biology is that biological networks have evolved to
function well while their components behave stochastically. Thus, the dynamics in a
biological network consist of two parts, deterministic and stochastic. A fundamental
question is to find a quantitative relation between the two parts. We term such a
relation as a deterministic-stochastic principle (DSP) and propose a model for a
DSP with regard to signal propagation in biological networks. In this model, (i)
the dynamics in a biological network is supposed to be captured by a stochastic
differential equation which has been a standard approach in modeling systems with
internal noise; (ii) the internal noise of a biological network is weak as is apparent in
experimental observations; and (iii) a biological network is organized as small-world
as suggested by recent studies. We introduce the concept of a signaling sample path.
Using this concept we relate the structure of a biological network to its dynamics.
The network structure characterizes the deterministic part of the dynamics, which
in turn ensures a probability for a signal to propagate. The weakness of the internal
noise characterizes the stochastic part of the dynamics. Analysis of the proposed
model yields a quantitative description as follows: In a small-world biological net-
work with weak internal noise, the signaling pathways (induced by the network
structure) for a signal may ensure a probability near 0 for the signal propagation.
Despite such a small probability, a correct response to the signal will still occur
with a probability close to 1 provided that this signal propagation can take a cer-
tain amount of time. Computer simulations are performed to illustrate this result.
We also discuss how a recent study on the reconstruction of a transcription network
in Saccharomyces cerevisiae has tested the proposed model against real data.

Key words: Signal propagation; Stochastic differential equation; Weak internal
noise; Small-world network; Measure concentration
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1 Introduction

A unique feature found in disparate types of biological networks is that the be-
havior of most components of a biological network is statistical. An emerging
notion in systems biology is that biological networks have evolved to function
well despite the uncertain behavior of their components. Thus, the dynam-
ics in a biological network consists of two parts, deterministic and stochas-
tic. A fundamental question in systems biology is how to quantitatively de-
scribe a general relation between the two parts. We term such a relation as
a deterministic-stochastic principle (DSP), and propose a model for a DSP
with regard to signal propagation in biological networks. In this model, (i) the
dynamics in a biological network is supposed to be captured by a stochastic
differential equation, which has been a standard approach for decades in mod-
eling systems with internal noise in chemistry, finance, physics, etc; (ii) the
internal noise of a biological network is weak as is apparent in experimental
observations; and (iii) a biological network is organized as small-world as sug-
gested by recent studies. With the proposed model we will demonstrate that
utilizing the weak internal noise, robust signal propagation may be achieved
through unreliable signaling pathways in a small-world biological network.

In principle, there are fundamental differences between biological and engi-
neering networks. To describe such differences, Alon (2006) coined the term
“probabilistic design”, and used the following example. “Engineered devices
such as a radio are designed to function with 100% probability if, say, the ON
button is pressed. We would say that a probabilistic radio is a malfunctioning
radio.” The author further pointed out that probabilistic design is common in
biology but rare in engineering, and that the study on the role of probabilistic
design in biology is only at its beginning. We may interpret the term “prob-
abilistic design” as DSP, since in most cases the deterministic and stochastic
parts of the dynamics in a biological network are related to each other. In
engineering, it would be wrong to claim that the hard wiring in a probabilis-
tic radio may ensure only a probability near 0 for radio signals through the
antenna to speaker, but we still can listen to such a radio with a probability
close to 1. A key to understand DSP is the study of noise in biological net-
works. The interplay between resilience to and utilization of internal noise in
biological networks has been at the center of research in systems biology (see
Barkai and Shilo, 2007).

Let us consider two examples of how weak noise in a loosely connected bio-
logical network can be utilized to facilitate desired dynamical changes. The
first is the phase synchronization in the olfactory system. Teramae and Tanaka
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(2004) and Nakao et al. (2005) independently proposed a stochastic differential
equation model to show that a common weak noise may induce phase synchro-
nization among oscillators. Galán et al. (2006) demonstrated the above model
captured the underlying mechanism for the phase synchronization among bulb
neurons in the olfactory system. Consider a group of uncoupled bulb neurons
each of which is modeled as an oscillator. The initial phases in these oscilla-
tors are randomly and independently chosen. Then the noise in the olfactory
system induces phase synchronization among the oscillators. However, the
weakness of noise was not mathematically formulated. Hong (2007) proposed
a mathematical formulation of weak noise, and analytically showed how it
works. The second example is quorum sensing of bacteria. Zhou et al. (2004)
demonstrated that noise induces the synchronization in a quorum sensing net-
work in a homogenous environment where the noise is uniformly distributed.
Subsequently, Hong et al. (2007) showed when the noise is weak, it may induce
the synchronization in a heterogenous environment where the distribution of
noise may be non-uniform.

Almost every biological network is inherently noisy, i. e., the noise in a bio-
logical network likely is internal meaning that the noise may not be switched
on or off by the network. In the present paper, we consider noise in bio-
logical networks as internal. From the viewpoint of mathematics, in almost
every biological network the internal noise is weak. This conclusion is based
upon a well established mathematical concept for noise – Brownian motion
and observations in almost all experiments in biology. In 1905 Albert Einstein
proposed a physical model for noise. For eighteen years it was not clear if this
physical model is mathematically sound, until Norbert Wiener proposed the
Wiener process often called Brownian motion. Today, Brownian motion is a
central part of a standard approach in modeling a wide variety of systems
with internal noise, including chemical, ecological, financial, physical systems.
Therefore, we may regard Brownian motion as a canonical form of noise. As a
stochastic process, a Brownian motion is quite rough. It was proven that dur-
ing any time period, almost every sample path in a 1-dimensional Brownian
motion belongs to a Hölder class Λα with 0 < α < 1

2
and cannot be in such

a class with α ≥ 1
2
. Recall that a function g(t), t ∈ [a, b] �→ g(t) ∈ R belongs

to a Hölder class Λα is defined as |g(t1)− g(t2)| ≤ M |t1 − t2|α for a constant
M > 0 and for all t1, t2 ∈ [a, b]. As a consequence, we can see that almost
every sample path in a 1-dimensional Brownian motion is a function which is
continuous but non-differentiable everywhere. A sample path in a Brownian
motion should somehow be reflected in experimentation. However, rough func-
tions as sample paths in a 1-dimensional Brownian motion are almost never
observed in biological experiments. This strongly suggests the internal noise
in a biological network is weak in the sense that the noise is restricted to a
low level compared with Brownian motion.

Consider loosely connected biological networks as in the two examples men-
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tioned earlier. We ask what additional network structures would be needed to
achieve robust signal propagation through utilization of weak internal noise.
Watts and Strogatz (1998) proposed a type of random network called small-
world. Most biological networks appear to fit into this type (see Albert, 2005,
and references therein), including the brain structural (Hagmann et al., 2008)
and functional networks (Bassett et al., 2006), mammalian transcription net-
works (Potapov et al, 2005).

As it turns out, the concepts of weak noise and small-world are sufficient
to propose a model for a DSP with regard to signal propagation in biological
networks. The proposed model uses the Itô equation, a special type of stochas-
tic differential equation, as a framework for dynamics in biological networks.
This approach has been standard in modeling systems with internal noise in
areas such as chemistry, finance, physics, etc (see Øksendal, 2007; Van Kam-
per, 2007, and references therein). We introduce a concept named signaling
sample path. Using this concept we quantitatively relate the structure of a
biological network to its dynamics. The network structure characterizes the
deterministic part of the dynamics, and hence, it ensures a probability for a
signal to propagate. (From the viewpoint of engineering, this probability must
be close to 1.) The weakness of the internal noise characterizes the stochastic
part of the dynamics. The weakness of noise is essentially characterized by
a parameter λ. Analysis of the proposed model applies theory of stochastic
differential equation and a deep result in measure concentration by Talagrand
(1995) which has been successfully used in many fields such as statistical
mechanics, statistics, and theoretical computer science. This indicates there
are connections between systems biology and modern probability theory. The
main result from the analysis is as follows. For a value that λ may take, the
following holds. Suppose a signal takes N time units to propagate. If the
probability for the signal to propagate ensured by the signaling pathways (in-
duced by the network structure) is at least ε1(N, λ), then utilizing the weak
internal noise, the probability for a correct response to the signal to occur
is at least (1 − ε2(N, λ)), where limN→∞ ε1(N, λ) = 0 and at the same time
limN→∞(1−ε2(N, λ)) = 1 at convergence rates sub-exponentially fast in terms
of N , respectively. Mathematical expressions for ε1(N, λ) and ε2(N, λ) will be
given in an explicit way.

This result suggests that in a small-world biological network with weak in-
ternal noise, although the signaling pathways may ensure a probability near
0 for a signal to propagate, a correct response to the signal will still occur
with a probability close to 1 provided that the propagation of the signal can
take a certain amount of time. Moreover, with the proposed model we de-
rive five parameters, and show these five parameters in general are enough to
characterize: a spatial-temporal scale for signal propagation in a small-world
biological network; the weakness of the internal noise; the accuracy of the sig-
nal propagation; and a minimal probability should be ensured by the signaling
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pathways for a signal to propagate. Then, by Theorem 1 we synthesize these
five parameters together to suggest a DSP with regard to signal propagation
in small-world networks with weak internal noise. In subsection 5.1 we dis-
cuss how a recent result on the reconstruction of a transcription network in
Saccharomyces cerevisiae has tested the proposed model against real data.

2 Methods

We will use the abbreviation SBN for Small-world Biological Network. We
will frequently use S and R to refer to a signal and a response to the signal,
respectively.

2.1 Dynamics in SBN

We begin with the Itô equation

Xt = X0 +
∫ t

0
f(s, Xs)ds +

∫ t

0
σ(s, Xs)dBs t ∈ [0, T ] (1)

As mentioned in the introduction, (1) has been used as a standard approach in
modeling a wide variety of systems with internal noise. We denote by (Ω,F , μ)
the underlying probability space for (1) where F is a Brownian filtration
{Ft : t ∈ [0, T ]}. We suppose that (1) has a unique continuous solution
{Xt : t ∈ [0, T ]} where Xt is understood as follows. Consider a SBN as a
weighted directed graph with each node labeled by a real number. Most bio-
logical networks fit into this frame. We arrange labels of the nodes and weight
of the links into a vector Xt = (x

(1)
t . . . x

(n)
t ) ∈ R

n such that each component

x
(i)
t (1 ≤ i ≤ n) represents either the label of a node or weight of a link. At a

time instant t, such a vector Xt ∈ R
n characterizes the dynamics of a SBN at

that moment. We call such a vector Xt ∈ R
n a network state.

(1) will be kept in an abstract setting with the following assumptions on f
and σ.

(A1) The drift coefficient f is determined by the network structure of a SBN.
Thus, f characterizes the deterministic part of the dynamics in the SBN. We
assume f is a bounded deterministic function [0, T ]×R

n �→ R
n, and satisfies

the uniform Lipschitz condition in Xt, i. e., there are constants b0, K > 0 such
that ‖f(t, x)‖∞ ≤ b0 and ‖f(t, x)− f(t, y)‖∞ ≤ K‖x− y‖∞ for every 0 ≤ t ≤
T , for all x, y ∈ R

n;

(A2) The diffusion coefficient σ is used to characterize the stochastic part of

5



Acc
ep

te
d m

an
usc

rip
t 

the dynamics in a SBN; it describes to what level the internal noise in a SBN
is restricted. Thus, σ is a stochastic process adapted to the Brownian filtration
F such that almost all sample paths in this process are uniformly bounded
functions that satisfy the uniform Lipschitz condition in Xt as described in
(A1). Moreover, σ constitutes the key character of the proposed model, which
will be presented as Definition 1 in subsection 2.3.

In what follows, by an instance of (1) we mean that f and σ are supposedly
assigned with concrete (measurable) functions. By the existence and unique-
ness theorem for the Itô equation, any instance of (1) that satisfies (A1) and
(A2) has a unique continuous solution. In this way, we use (1) as a framework
for dynamics (including signal propagation processes) in SBN.

2.2 Signal and its response

A principle in systems biology is that a SBN operates at a specific spatial-
temporal scale (e. g. see Alon, 2006). Thus, during a time period shorter than
the limit of this scale, no dynamical changes in the network can be measured on
this scale, although beneath the scale a SBN may constantly undergo changes.
Therefore, we can model the dynamics in a SBN by a continuous stochastic
process {Xt : t ∈ [0, T ]}, and then analyze the dynamics via a discrete version
{Xlτ : l = 0, . . . , N + N0} where τ is the minimum time period needed for the
internal noise to possibly cause changes in the dynamics on the scale. Without
loss of generality, we let T = (N + N0)τ for some N , N0 ∈ Z

+.

A signal is defined by a spatial-temporal sequence occurring in a subnet-
work at times t = lτ , l = 0, 1, . . ., N ′

0. Suppose x
(i)
t represents the label

of a node or weight of a link in this subnetwork. Then, all these sequences
{x(i)

lτ : l = 0, 1, . . . , N ′
0} together define a signal S. Given a signal, a response

to this signal is defined by a spatial-temporal sequence occurring in another
subnetwork at times t = lτ , l = N , (N + 1), . . ., (N + N0). Suppose x

(i)
t

represents the label of a node or weight of a link in that subnetwork. Then,
all those sequences {x(i)

lτ : l = N, (N + 1), . . . , (N + N0)} together define a
response R. In the proposed model, a signal S is considered in a general
form as defined above, and our focus is the occurrence of a correct response
R to S. For this purpose, we introduce a notation, a subset rS ⊆ {1, . . . , n}
defined as follows: i ∈ rS if and only if x

(i)
t describes the dynamics of a node

or link in the subnetwork where all possible responses to S are supposed to
occur.

τ can be understood as the time unit in the propagation of S. Accordingly,
N is used to measure the total number of the time units from the beginning
of S to the beginning of R. That is, N is understood as the length of
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propagation of a signal. And (N ′
0 + 1) and (N0 + 1) measure the length

of a signal and the length of a response, respectively. We suppose N ′
0 ≤

N0 i. e. the length of a response is longer than or equal to the length of the
signal which is true in most cases. We normalize τN by 1, i. e. τN = 1. In
what follows, τ will be treated as a small positive real number, and N as a
large positive integer. The intuition of this arrangement is that the internal
noise may affect the propagation of S for a number of times.

Additionally, N is used to limit the size n of the network as well as the length
(N0 + 1) of a response R

n ≤ Nα1 and (N0 + 1) ≤ Nα2 for some constants α1, α2 > 0 (2)

2.3 Weak internal noise

Since the dynamics in a SBN is modeled by the unique continuous solu-
tion {Xt : t ∈ [0, T ]} of an instance of (1), the internal noise in this SBN
is accordingly modeled by the martingale {Mt : t ∈ [0, T ]} where Mt =

(M(1)
t . . .M(i)

t . . .M(n)
t ) =

∫ t
0 σ(s, Xs)dBs. Now, we formulate the weakness of

the internal noise, using the diffusion coefficient σ.

Definition 1 The diffusion coefficient σ in (1) is said to be feasible, if for
every 1 ≤ l ≤ N + N0,

(a) (smoothness) there are two constants b1 > 0 and 0 < λ < 1
2

such that for

every 1 ≤ i ≤ n and for all s ∈ [(l − 1)τ, lτ ], M(i)
s − M(i)

(l−1)τ has zero mean

and support in (s− (l − 1)τ)
1
2
+λ [− b1

2
, b1

2
];

(b) (average-on-scale) the process {σ(s, ·)− σ((l− 1)τ, ·) : s ∈ [(l− 1)τ, lτ ]} is
independent of F(l−1)τ .

(a) characterizes a low level that the internal noise in a SBN is restricted to,
reusing the idea appeared in Hong (2007) and Hong et al. (2007) respectively
for the noise in the olfactory system and quorum sensing network. In almost
all experiments in biology, the dynamics of a node or link in a biological net-
work is smooth to a certain degree. In a transcription network, the dynamics
of a node (resp. link) represents the concentration level of bio-molecule (resp.
the strength of regulatory function). In a neural network, the dynamics of
a node (resp. link) represents the membrane potential of neuron (resp. the
strength of synapse). All those dynamics are observed to posses a certain
degree of smoothness. Mathematically speaking, dynamics in biological net-
works, including signal propagation processes, can be interpreted by functions
in Hölder classes Λα with α > 1

2
. In the proposed model, a signal propagation
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process is modeled by a continuous stochastic process {Xt : t ∈ [0, T ]}. By

(A1), (A2) and (a), it is not hard to see that each component x
(i)
t , 1 ≤ i ≤ n,

in {Xt : t ∈ [0, T ]} almost surely is a function in a Hölder class Λα with α =
1
2

+ λ > 1
2
. Thus, by (a) we use the smoothness of the dynamics of a node or

link in a SBN to formulate a low level that the internal noise is restricted to.
This opposes the roughness of 1-dimensional Brownian motion where almost
every sample path belongs to a Hölder class Λα with α < 1

2
and cannot be in

such a class with α ≥ 1
2
.

The reason for λ < 1
2

in (a) is as follows. By (A1), (A2) and (a) of Definition 1,

we can see that for each 0 ≤ l ≤ N0, the range of the random variable x
(i)
(N+l)τ

may well be about E[x
(i)
(N+l)τ ] ± N

1
2
−λ. To let x

(i)
(N+l)τ take its possible values,

we suppose λ < 1
2
. Notice that for large N , λ must be close to 1

2
, since in a

biological network x
(i)
(N+l)τ is absolutely bounded.

(b) outlines a mechanism to achieve (a) in general. The idea is as follows.
The source of the internal noise in a biological network is random activities
at spatial-temporal scales finer than the spatial-temporal scale upon which
the biological network operates. In transcription networks, it is the random
formation and decay/death of individual molecules, irregular motion of biolog-
ical particles or solutes, etc. In neural networks, it is the random fluctuations
in membrane potentials or in ion channels, etc. In the proposed model, this
noise source is modeled by the Brownian motion Bt in (1). Recall a principle
in systems biology is that a biological network operates at a specific spatial-
temporal scale. In a SBN, by definition τ is the minimum time period needed
for the internal noise to possibly cause changes in the dynamics on the scale
upon which the SBN operates. We suppose the internal noise in a SBN is the
result of averaging a Brownian motion over each time interval of length τ .
That is, in the martingale {Mt(=

∫ t
0 σ(s, Xs)dBs) : t ∈ [0, T ]}, σ is supposed

to average Bs over each time interval of length τ . Therefore, the behavior of
σ follows the behavior of the Brownian motion Bt as described by (b).

In (b) the average-on-scale mechanism is defined upon the existence of feasible
σ which also satisfy (A2). By the martingale representation theorem, it is not
hard to see such σ exist if N and τ are both fixed numbers. In a concrete SBN,
N and τ may well be considered as fixed numbers. Also, recall the martingale
representation theorem is an existence theorem. This indicates that without
knowing the details of how the internal noise in a SBN is restricted, we can
safely take what has been observed – the noise is restricted to a low level as
characterized by (a). That is, the martingale representation theorem assures,
given a martingaleMt, there is mechanism that averages the Brownian motion
Bt to yield the martingale.
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2.4 Deterministic vs. stochastic

In a biological network, the network structure specifies how the nodes and
links are put together, and hence, it characterizes the deterministic part of
the dynamics. There are a number of papers and monographs on this subject.
We refer the reader to Alon (2006) and Palsson (2006) for comprehensive
surveys and references.

We introduce a concept named signaling sample path. Using this concept we
relate the network structure of a SBN to its dynamics. In what follows, as
in the literature on biological networks, by “a signaling pathway” we mean a
path in a biological network along which a signal is passed from node to node
to yield a response that correctly corresponds to the signal, and as in theory of
stochastic process, by “a sample path” we mean a function Xt(ω) for a fixed
ω ∈ Ω which represents network states at time instances t for all t ∈ [0, T ].

Recall that with (A1) and (A2) we use the Itô equation (1) as a framework
for dynamics in biological networks. This implies that the differential equation
Xt = X0 +

∫ t
0 f(s, Xs)ds, t ∈ [0, T ], is used to characterize the deterministic

part of the dynamics in a SBN, and the term
∫ t
0 σ(s, Xs)dBs in the stochastic

differential equation Xt = X0 +
∫ t
0 f(s, Xs)ds +

∫ t
0 σ(s, Xs)dBs, t ∈ [0, T ],

characterizes the stochastic part of the dynamics in the same SBN.

As far as signal propagation in a SBN is concerned, the above differential
equation may have multiple solutions, each of which describes how a given
signal may propagate in the SBN. When the stochastic part is added, the
solution of the above stochastic differential equation is a stochastic process,
which is fundamentally different from multiple solutions for the differential
equation even if this stochastic process is the unique continuous solution for
the stochastic differential equation. It is crucial to recognize that a solution
of the differential equation becomes a sample path in the unique continuous
solution of the stochastic differential equation. This suggests properties of the
stochastic process – the unique continuous solution of the stochastic differen-
tial equation may paly an important role in signal propagation. As we will
see, the result of the present paper shows this is indeed the case.

We call a sample path Xt(ω) in {Xt : t ∈ [0, T ]} a signaling sample path
with respect to S, if this sample path is from a solution of the differential
equation as discussed in the previous paragraph. That is, following the de-
terministic part of the dynamics, the network states along this sample path
exhibit how S is passed from node to node to yield a response R that correctly
corresponds to S. We define

AS = {ω ∈ Ω : Xt(ω) is a signaling sample path} (3)
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Since the underlying probability space for {Xt : t ∈ [0, T ]} is (Ω,F , μ), in
terms of probability μ(AS) measures the deterministic part of the dynamics
with regard to the propagation of S.

Since a SBN is organized as small-world, the network structure of a SBN would
likely provide a minimum value for μ(AS). Indeed, we may suppose μ(AS) has
a lower bound

μ(AS) ≥ exp

(
−N2λ2

4

)
for a constant λ2 with 0 < λ2 < λ <

1

2
(4)

The idea behind this inequality is as follows. The propagation of S is viewed
as a chain of cascading events. Since the biological network is organized as
small-world network, by definition the length of such a chain is almost surely
poly-logarithmic of the network size n. Thus, by the first inequality in (2) we
may write this length as k1 logk2 N for some constants k1, k2 > 0. We assume
that with probability at least exp

(
− N2λ2

4k1 logk2 N

)
(< 1 for large N), an event

correctly triggers the next event, which leads to the inequality in (4).

Notice that the hypothesis made by (3) and (4) is quite weak so that the lower
bound on the right-hand side of the inequality is near 0 for large N .

2.5 SBN suitable for signal propagation

By definition, a signaling sample path Xt(ω) with respect to a signal S exhibits
a correct response to S. Thus, any response R that deviates not far from a
response observed along a signaling sample path should be a correct response
to S. The following definition is a realization of this idea. Let λ1 be a constant,
with 0 < λ2 < λ1 < λ < 1

2
. We define

Definition 2 A response R to a signal S is said to be correct, if for every
x

(i)
t , i ∈ rS, and for each 0 ≤ l ≤ N0, there is Xt(ω) ∈ AS such that

∣∣∣x(i)
(N+l)τ − x

(i)
(N+l)τ (ω)

∣∣∣ ≤ 1

Nλ−λ1

(
b0

N
1
2
−λ

+ b1

)
(5)

There is a minor complication in Definition 2. That is, for different i ∈ rS or
0 ≤ l ≤ N0, in (5) we may have different x

(i)
(N+l)τ (ω), ω ∈ AS . This issue will

be resolved by Corollary 1 in subsection 4.2.

We are now ready to define the proposed model by a class of SBN in which
weak internal noise can be utilized for signal propagation.

Definition 3 A SBN is said to be suitable for a signal S to propagate, if
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(i) the propagation of S can be captured by the unique continuous solution of
an instance (1) in which the drift coefficient f satisfies (A1), and the diffusion
coefficient σ satisfies (A2) and is feasible as in Definition 1;

(ii) the correctness of a response R to S is defined by Definition 2 with μ(AS)
satisfying (4);

(iii) the network size as well as the length of R is bounded as expressed in (2).

Except in simulations in subsection 2.5, in what follows, a signal is considered
in a general form as defined in subsection 2.2 so that the proposed model may
be applied to disparate types of SBN. We will frequently say a SBN is suitable
whenever there is no confusion about what signal is being considered.

3 Results

3.1 The theorem

Definition 3 indicates that as far as signal propagation in biological network
is concerned, only five parameters, τ , N , λ, λ1 and λ2, essentially need to be
adjusted.

• τ and N are paired together to specify a spatial-temporal scale for signal
propagation as discussed in subsection 2.2.

• λ, λ1 and λ2 satisfy a relation 0 < λ2 < λ1 < λ < 1
2
. The parameter λ is

basic. The constraint λ ∈ (0, 1
2
) is to formulate the weakness of noise as in

Definition 1.

• N , λ and λ1 together characterize the accuracy of signal propagation as
given in Definition 2.

• N and λ2 together describe a basis for the robustness of signal propaga-
tion, namely a minimum probability provided by network structure for signal
propagation as expressed in (4).

Given a signal S, we let {a correct response R to S occurs} denote the event
where the response R in the sample path Xt(ω) is correct. That is, Xt(ω)
models an experimental trial in which a correct response R to S is observed.
Then, μ {a correct response R to S occurs} represents the probability for a
correct response to the signal to occur. The following theorem synthesizes the
five parameters together, suggesting a DSP with regard to signal propagation
in suitable SBN.

11
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Theorem 1 In a SBN that is suitable for a signal S to propagate

μ {a correct response R to S occurs} ≥
1− Nα1+α2

μ(AS)
exp

(
−N2λ1

4

)
≥ 1−Nα1+α2 exp

(
−N2λ1 −N2λ2

4

)
(6)

A mathematical proof for this theorem can be found in subsection 4.3. In re-
gard to signal propagation, (6) quantitatively describes a general relation be-
tween the deterministic and stochastic parts of the dynamics in suitable SBN.
Indeed, let ε1(N, λ) = exp

(
−N2λ2

4

)
and ε2(N, λ) = Nα1+α2 exp

(
−N2λ1−N2λ2

4

)
.

Then, ε1(N, λ) can be viewed as the minimum probability should be ensured
by the signal pathways for a signal S to propagate. Corresponding to such a
ε1(N, λ), 1 − ε2(N, λ) is a lower bound for a correct response R to S to occur.

3.2 The illustration

We use computer simulations to illustrate Theorem 1. For simplicity, we as-
sume the lengths of a signal S and its response R are the same. In subsection
4.3, with Corollary 2 we will show in general that the length of R can be
longer than the length of S.

In simulation Fig 1, we consider a signal S as a deterministic temporal se-
quence {hS(lτ) : l = 0, . . . , N0} at a node u, and a correct response R to
S as a temporal sequence {hR((l + N)τ) : l = 0, . . . , N0} at another node
v. The link (u, v) is to mimic the only signaling pathway from u to v which

ensures a probability μ(AS) = exp
(
−N2λ2

4

)
for S to propagate. In simulation

Fig 2, we consider a signal S consisting of two branches propagating in parallel
from u1 and u2 to v1 and v2, separately and independently. Two links (u1, v1)
and (u2, v2) are to mimic the only signaling pathways, each of which ensures

the same probability exp
(
−N2λ2

4

)
for a branch of S to propagate. The two

responses to the two branches at v1 and v2 must be synchronized.

An algorithm used for the simulations is as follows. Following the (sample)
path-wise definition of stochastic integration, the Itô equation (1) is viewed
as an operator I that transforms a signal S to a correct response R. Given
S, using (N0 + 1) functions wl(t), t ∈ [lτ, (l + N)τ ], I transforms hS(lτ) to
hR((l + N)τ) where all wl(t) are functions in a Hölder class Λα with α > 1

2
,

and satisfy wl(lτ) = hS(lτ) and wl((l + N)τ) = hR((l + N)τ), l = 0, . . ., N0.

Algorithm Ah:

{1} for l = 0 to N0

12



Acc
ep

te
d m

an
usc

rip
t 

{2} hC((l + N)τ) := hS(lτ);

{3} for g = 1 to N

{4} with probability (μ(AS))
1
N , hC((l + N)τ) := hC((l + N)τ)

+ [wl((l + g)τ)− wl((l + g − 1)τ)];

{5} hC((l + N)τ) := hC((l + N)τ) + δ(l, g) where δ(l, g) is a random

number with zero mean and support in τ
1
2
+λ[− b1

2
, b1

2
];

{6} output hC((l + N)τ) (as if it is hR((l + N)τ));

{7} check the error (hC((l + N)τ)− hR((l + N)τ));

The algorithm Ah consists of two loops, an outer loop line {1} – {7} and
an inner loop line {3} – {5}. A signal S is a temporal sequence of (N0 + 1)
elements. Through the outer loop, these (N0 + 1) elements are transformed in
temporal order.

Recall the time unit for the propagation of S is τ , and we take the normaliza-
tion τN = 1 (subsection 2.2). Thus, the inner loop claims each element in S
takes N time units to propagate. During the time unit ((l + g− 1)τ, (l + g)τ ],

line {4} asserts with probability (μ(AS))
1
N , hC((l + N)τ) has an increment

[wl((l + g)τ)− wl((l + g − 1)τ)]. This mimics the transform of the element is
along the signaling pathway which is overall ensured as μ(AS) by the network
structure. Line {5} indicates in any case the internal noise always affects the
transform. It is crucial to recognize the importance of line {5}: In the case
when hC((l+N)τ) does not have the increment in line {4} i. e. the propagation
is disrupted, the internal noise can be viewed as holding the element momen-
tarily which describes how the noise helps the propagation. This is consistent
with observations in most cases: the decay of a biological signal takes a much
longer period than τ .

The transform without help from the internal noise is simulated as follows. In
the algorithm Ah, line {3} to {5} are replaced by one line

{
} with probability μ(AS), hC((l + N)τ) := hR((l + N)τ), else, null;

where “null” is to simulate no output in plotting. Line {7} is removed. That
is, the link is simulated as an unreliable channel so that each element in a
signal is transformed with probability μ(AS).

For the simulation Fig 1 and Fig 2, the values assigned to the five parameters
are: τ = 10−6; N = 106; λ = 0.49; λ1 = 0.2; and λ2 = 0.1105. The τ and N
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are paired together to specify a spatial-temporal scale seen in neural networks.
According to Schröder et al. (2005), the minimum time period needed for the
internal noise in a neural network to possibly cause changes in the dynamics
can be measured in microseconds. The duration from the beginning of a signal
to the beginning of its response in a neural network can usually be measured
on a scale of seconds. The λ is chosen to be close to 1

2
as discussed in subsec-

tion 2.3. Once τ , N and λ are determined, values for λ1 and λ2 can be chosen
in certain ranges, all of which will demonstrate the robustness of signal prop-
agation. Here, we made the above choice only for the purpose of illustration.
The choice of wl used in the simulations will be discussed in subsection 5.2.

As in (2), we use N to limit N0, letting (N0 + 1) = 105, i. e., α2 = 5
6

such

that (N0 + 1) = (106)
5
6 = 105. This means the length of a signal as well as its

response is measured on a scale of seconds. In the simulation, when (N0 + 1)
= 105, the computer program takes hours to produce one set of output. To
perform computations in a reasonable amount of time, we used (N0+1) = 2000
to run the computer program, and got output similar to what obtained with
(N0 + 1) = 105. Despite this change we still use (N0 + 1) = 105 for theoretical
prediction made by Theorem 1.

We let b0 = 1 in (A1) and b1 = 2 in Definition 1. Having values assigned to all
the parameters, using Theorem 1 we can make some theoretical predictions
about the outcome of the simulations Fig 1 and Fig 2. According to (5), the
accuracy of signal propagation is characterized by an error bound of ≈ 0.034
for these chosen parametric values, which is indeed larger than the errors
±2 · 10−3 found in our simulations; the probability for a correct response R
to S to occur should always be at least 1 − 3 · 10−13 as supported by the
outcomes of multiple runs in our simulations.

The MATLAB programs used for the simulations are available on request.

4 Analysis

We first analyze a special case when the length N ′
0 of a signal equals the length

N0 of its response. Then, at the end of subsection 4.3 we extend the analysis
to a general case where N ′

0 ≤ N0.

4.1 The average-on-scale

By Definition 3, in a suitable SBN the propagation of a signal is supposedly
captured by the unique continuous solution {Xt : t ∈ [0, T ]} of an instance
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(1). Projecting such a solution on every single dimension of Xt, we have for
every 1 ≤ i ≤ n

x
(i)
t = x

(i)
0 +

∫ t

0
fi(s, x

(1)
s , . . . , x(n)

s )ds

+
k∑

j=1

∫ t

0
σij(s, x

(1)
s , . . . , x(n)

s )dB(j)
s

= x
(i)
0 +

∫ t

0
fi(s, x

(1)
s , . . . , x(n)

s )ds +M(i)
t t ∈ [0, T ]

(7)

We show the average-on-scale in Definition 1 results in {x(i)
lτ : l = 0, . . . , (N +

N0)}, i = 1, . . ., n, being stochastic processes with independent increments.
In general, these processes as a discrete version of the unique continuous so-
lution of an instance of (1) are Markovian not necessarily with independent

increments. For 1 ≤ i ≤ n, define π
(i)
l = x

(i)
lτ − x

(i)
(l−1)τ , l = 1, . . ., N + N0.

Then,

Lemma 1 For every 1 ≤ i ≤ n, the increments π
(i)
l of x

(i)
t , l = 1, . . ., N +N0,

are independent.

Proof: Recall that when an instance of (1) meets the conditions for the exis-
tence and uniqueness theorem, the unique continuous solution {Xt : t ∈ [0, T ]}
can be obtained by an iteration procedure. For the proposed model, for each
1 ≤ i ≤ n, let x

(i)
t (0) ≡ x

(i)
0 , and then with (7) inductively define

x
(i)
t (h + 1) = x

(i)
0 +

∫ t

0
fi(s, x

(1)
s (h), . . . , x(n)

s (h))ds

+
k∑

j=1

∫ t

0
σij(s, x

(1)
s (h), . . . , x(n)

s (h))dB(j)
s t ∈ [0, T ]

For each 1 ≤ i ≤ n, we have a sequence of continuous stochastic processes
{x(i)

t (h) : t ∈ [0, T ]}, h = 0, 1, 2, . . . All these stochastic processes are defined
on the probability space (Ω,F , μ) such that for almost all ω ∈ Ω

lim
h→∞

x
(i)
t (h) = x

(i)
t uniformly for t ∈ [0, T ] (8)

Moreover, by the uniqueness, the iteration may begin at any time t ∈ [0, T ].
Recall that T = (N + N0)τ (subsection 2.2). For any 1 ≤ l ≤ N + N0, if we

take the random variable x
(i)
(l−1)τ from the solution, and for t ∈ [(l − 1)τ, T ],
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define x
(i)
t (0) ≡ x

(i)
(l−1)τ and

x
(i)
t (h + 1)− x

(i)
(l−1)τ =

∫ t

(l−1)τ
fi(s, x

(1)
s (h), . . . , x(n)

s (h))ds

+
k∑

j=1

∫ t

(l−1)τ
σij(s, x

(1)
s (h), . . . , x(n)

s (h))dB(j)
s

(9)

then (8) holds uniformly for t ∈ [(l − 1)τ, T ]. With harmless notation abuse,

we will use the same symbol x
(i)
t (h) for iterations starting at different times.

(x
(i)
t − x

(i)
(l−1)τ ) is the increment of x

(i)
t during the period [t, lτ ], (l − 1)τ ≤ t

≤ lτ . Let us first consider a simple case when l = 2 and the random vector
(x(1)

τ . . . x(n)
τ ) takes a single value (a(1)

τ . . . a(n)
τ ).

Claim: For every 1 ≤ i ≤ n, for every t ∈ (τ, 2τ ], we have for each h ≥ 0, the

random variable (x
(i)
t (h)− a(i)

τ ) is independent of Fτ .

We prove this claim by induction on h, using (9). For h = 0, (x
(i)
t (0) − a(i)

τ )
≡ 0, and hence, it is independent of Fτ . For h > 0, on the right hand side
of (9), under the induction hypothesis we have: the first term is independent
of Fτ because by (A1) fi is deterministic; and (ii) the second term is also
independent of Fτ by (b) in Definition 1. From this, the claim follows.

Let h →∞ in (9). Then, with the claim, the uniform convergence in (8), (A1)
and (A2), and the continuity of measure, we have for a given a(i)

τ , the random

variable (x
(i)
t − a(i)

τ ) is independent of Fτ . Because (a(1)
τ . . . a(n)

τ ) can be chosen

according to the probability distribution of (x(1)
τ . . . x(n)

τ ), we have that (x
(i)
t −

x(i)
τ ), in particular, (x

(i)
2τ − x(i)

τ ) is independent of Fτ . The lemma follows from
repeating the above argument for l = 3, . . ., N + N0. �

4.2 Measure concentration I

In subsection 2.2, we formulated a signal as a spatial-temporal sequence oc-
curring in a subnetwork at times t = lτ , l = 0, 1, . . ., N0. A signal is de-
terministic; that is, for x

(i)
t representing the label of a node or weight of a

link in the subnetwork, the sequence {x(i)
lτ : l = 0, 1, . . . , N0} as a branch of

the signal is deterministic. In the analysis followed, we consider the sequence
of network states {Xlτ : l = 0, 1, . . . , N0} as deterministic, i. e., all sequences

{x(i)
lτ : l = 0, 1, . . . , N0}, i = 1, . . ., n, are deterministic. This is to resolve a ma-

jor concern in the study of signal propagation in biological networks, namely
the retention of the background activity of a signal. When a signal is prop-
agating, other processes taking place during the same time, often called the
background activity in literature, should be retained as well. The background
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activity of a signal is generally unknown to the signal. In section ??, signal
propagation is modeled in a quite general way: signal and response, noise, and
suitable SBN are all formulated without specifications such that signal prop-
agation in disparate types of biological networks may fit into the proposed
model. Now, we let the sequence of network states {Xlτ : l = 0, 1, . . . , N0}
be deterministic without specifications. That is, given a signal we consider
all possible background activities. And we show in a suitable SBN, a cor-
rect response to the signal will occur no matter what the background activity
may be. Also, notice that the supposition of the sequence of network states
{Xlτ : l = 0, 1, . . . , N0} being deterministic does not require changes on the
proposed model.

For 1 ≤ i ≤ n, for 0 ≤ l ≤ N0

x
(i)
(N+l)τ =

N∑
j=1

(x
(i)
(j+l)τ − x

(i)
(j+l−1)τ ) + x

(i)
lτ =

N∑
j=1

π
(i)
j+l + x

(i)
lτ (10)

Since x
(i)
lτ , 0 ≤ l ≤ N0, are deterministic, we have

E[x
(i)
(N+l)τ ] =

N∑
j=1

E[π
(i)
j+l] + x

(i)
lτ (11)

Lemma 2 For 1 ≤ i ≤ n, we have for 0 ≤ l ≤ N0

μ

(∣∣∣x(i)
(N+l) − E[x

(i)
(N+l)]

∣∣∣ ≤ 1

Nλ−λ1

(
b0

N
1
2
−λ

+ b1

))

≥ 1− 2 exp

(
−N2λ1

2

) (12)

Proof: For 1 ≤ i ≤ n, for 0 ≤ l ≤ N0, let θ
(i)
j+l = π

(i)
j+l − E[π

(i)
j+l], j = 1, . . .,

N . Using (10) and (11), we have

N∑
j=1

θ
(i)
j+l = x

(i)
(N+l)τ − E[x

(i)
(N+l)τ ] (13)

We observe
∣∣∣θ(i)

j+l

∣∣∣ =
∣∣∣π(i)

j+l − E[π
(i)
j+l]

∣∣∣ =
∣∣∣(x(i)

j+l − x
(i)
j+l−1)− E[x

(i)
j+l − x

(i)
j+l−1]

∣∣∣ ≤
2 supω∈Ω

∣∣∣x(i)
j+l(ω)− x

(i)
j+l−1(ω)

∣∣∣. Using this and (7), by (A1) and (a) in Defini-
tion 1 we have

∣∣∣θ(i)
j+l

∣∣∣ ≤ 2
(
b0τ + b1τ

1
2
+λ
)

=
2

N
1
2
+λ

(
b0

N
1
2
−λ

+ b1

)
(Nτ = 1) (14)

By Lemma 1, θ
(i)
j+l are independent random variables with zero mean. Com-

bining this with (13) and (14), by Hoeffding’s inequality (Hoeffding, 1963), we
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have for δ > 0, for 1 ≤ i ≤ n, and for 0 ≤ l ≤ N0

μ
(∣∣∣x(i)

(N+l) − E[x
(i)
(N+l)]

∣∣∣ ≤ δ
)
≥ 1− 2 exp

⎛
⎜⎜⎜⎝− δ2N2λ

2
(

b0

N
1
2
−λ

+ b1

)2

⎞
⎟⎟⎟⎠

Let δ = 1
Nλ−λ1

(
b0

N
1
2
−λ

+ b1

)
. The Lemma follows. �

This lemma demonstrates that in a suitable SBN where the internal noise
is restricted to a low level as in Definition 1, the noise brings the stochastic
stability to the overall dynamics as described by (12): at times t = (N + l)τ ,

l = 0, . . ., N0, every x
(i)
t , 1 ≤ i ≤ n, concentrates on its expectation, i. e., the

network states Xt at these times are stochastically stable.

A corollary of Lemma 2 explains a correct response to a signal is related to the
stable network states Xt at times t = (N + l)τ , l = 0, . . ., N0, as observed in
most experiments. Let μ(�|AS) denote the conditional probability that under

condition ω ∈ AS , the inequality
∣∣∣x(i)

(N+l) − E[x
(i)
(N+l)]

∣∣∣ ≤ 1
Nλ−λ1

(
b0

N
1
2−λ

+ b1

)
holds for i ∈ rS and 0 ≤ l ≤ N0 in the sample path Xt(ω). Then,

Corrollary 1

μ(�|AS) ≥ 1− 2Nα1+α2 exp

(
−2N2λ1 −Nλ2

4

)
(15)

Proof: Denote by μ(�∩AS) the probability of the intersection of the following

two events: ω ∈AS ; and the inequality
∣∣∣x(i)

(N+l) − E[x
(i)
(N+l)]

∣∣∣≤ 1
Nλ−λ1

(
b0

N
1
2
−λ

+ b1

)
holds for i ∈ rS and 0 ≤ l ≤ N0 in the sample path Xt(ω). Then, by (2) and
(12) we have

μ(� ∩ AS) ≥ μ(AS)− 2Nα1+α2 exp

(
−N2λ1

2

)

The corollary follows from this and (4). �

This corollary resolves the complication in Definition 2: for different i ∈ rS or
0 ≤ l ≤ N0, in Definition 2 we can use different x

(i)
(N+l)τ (ω), ω ∈ AS in (5),

since (15) indicates they all highly concentrate on E[x
(i)
(N+l)τ ] as long as N is

large enough.
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4.3 Measure concentration II

Lemma 1 claims the dynamics x
(i)
t in each component (a node or link) in a

suitable SBN exhibits independent increments for time intervals [(l− 1)τ, lτ ],
l = 1, . . ., N + N0. This is consistent with observations in most biological
experiments. During a time interval [(l−1)τ, lτ ], the value of x

(i)
t changes from

x
(i)
(l−1)τ (ω) to x

(i)
lτ (ω) where x

(i)
lτ (ω) may well correlate to x

(i)
(l−1)τ (ω). However, in

most biological experiments, it has been observed: (i) the expectations E[(x
(i)
lτ −

x
(i)
(l−1)τ )], l = 1, . . ., N + N0, are determined, i. e. the dynamics is predicable

over time; (ii) for 1 ≤ l′ < l ≤ N + N0, how (x
(i)
lτ (ω) − x

(i)
(l−1)τ (ω)) deviates

from E[(x
(i)
lτ − x

(i)
(l−1)τ )] are independent of how (x

(i)
l′τ (ω)− x

(i)
(l′−1)τ (ω)) deviates

from E[(x
(i)
l′τ (ω) − x

(i)
(l′−1)τ (ω))]. The proof for Lemma 1 shows the cause of

this independency is the internal noise. Thus, this lemma is sound from the
perspective of mathematics as well as biology.

Upon Lemma 1 we prove Theorem 1 stated in subsection 3.1. The technique
idea behind the proof is as follows. For a signal S, in a general way, we extend
the subset AS ⊆ Ω (it may be the case μ(AS) = exp

(
−N2λ2

4

)
≈ 0) to almost

entire Ω such that a correct response to S will occur in sample paths Xt(ω)
with high probability. To achieve this, we may use a refined martingale argu-
ment. However, the isoperimetric theorem by Talagrand (1995), a deep result
in measure concentration, is much more powerful. This theorem provides a
general way to extend a given subset to almost the entire domain in a prod-
uct probability space. Talagrand proposed a distance often called Talagrand’s
convex distance with which we can do so. The origin of this distance can be
traced back to probability in Banach spaces (Ledoux and Talagrand, 1991).

Proof of Theorem 1: Given a signal S, we fix 1 ≤ i ≤ n and 0 ≤ l ≤ N0.
Denote by π(i,l) the random vector (π

(i)
l+1 . . . π

(i)
l+N) which takes points in R

N

as its values. With harmless notation abuse, we also denote such a point by
π(i,l). We will call π(i,l) a point whenever it is treated in this way.

We say that a point π(i,l) is induced by a sample path Xt(ω) if x
(i)
jτ (ω) −

x
(i)
(j−1)τ (ω) = π

(i)
j for all j = l + 1 . . . l + N . Accordingly, we say that a set

H
(i,l)
Σ of points π(i,l) is induced by an event Σ ∈ F if each point in this set

is induced by a sample path Xt(ω) with ω ∈ Σ. Different events may induce

the same set of points. In what follows, for a given H
(i,l)
Σ we consider Σ as the

union of all events that induce H
(i,l)
Σ . We can see that such an union is still in

F under the conditions of the proposed model.

We construct a probability space with domain H
(i,l)
Ω , the set of points induced

by Ω. It is not hard to verify: all these unions Σ mentioned above form a sub
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σ-algebra of F ; all these subset H
(i,l)
Σ ⊆ H

(i,l)
Ω form a σ-algebra of H

(i,l)
Ω ; and

the one-to-one correspondence Σ ↔ H
(i,l)
Σ induces a probability measure ν(i,l)

on H
(i,l)
Ω with

ν(i,l)(H
(i,l)
Σ ) = μ(Σ) (16)

By Lemma 1, this probability space is a product space. In what follows, we
simply denote this product probability space by H

(i,l)
Ω .

Through the product probability space H
(i,l)
Ω , we analyze the behavior of x

(i)
l+N .

Consider H
(i,l)
A′S

where A′S is the union of all events in F that induce the same

set of points π(i,l) as AS does. By (16) we have

ν(i,l)(H
(i,l)
A′S

) = μ(A′S) ≥ μ(AS) (17)

Define

H
(i,l)
BS(i,l) =

{
π̄(i,l) ∈ H

(i,l)
Ω :∣∣∣{j : (l + 1 ≤ j ≤ l + N) ∧ ∃π(i,l) ∈ H

(i,l)
A′S

(π
(i)
j �= π̄

(i)
j )}

∣∣∣ ≤ N
1
2
+λ1

} (18)

Claim:

ν(i,l)(H
(i,l)
BS(i,l)) ≥ 1− 1

ν(i,l)(H
(i,l)
A′S

)
exp

(
−N2λ1

4

)
(19)

We prove this claim by Talagrand’s isoperimetric theorem. In the product
probability space H

(i,l)
Ω , Talagrand’s convex distance dT can be expressed as

dT (π̄(i,l), H
(i,l)
A′S

) = sup
β∈RN

⎧⎪⎨
⎪⎩z(β) : z(β) = inf

π(i,l)∈H
(i,l)

A′S

⎧⎨
⎩

l+N∑
j=l+1

βj1(π
(i)
j �= π̄

(i)
j )

⎫⎬
⎭

and
l+N∑

j=l+1

β2
j ≤ 1

⎫⎬
⎭ where 1(π

(i)
j �= π̄

(i)
j ) = 1 if π

(i)
j �= π̄

(i)
j , 0 otherwise

(20)

By Theorem 4.1.1 in Talagrand (1995), we have

ν(i,l)
(
dT (π̄(i,l), H

(i,l)
A′S

) < Nλ1

)
≥ 1− 1

ν(i,l)(H
(i,l)
A′S

)
exp

(
−N2λ1

4

)
(21)

Indeed, letting βj = N−1/2 for j = l + 1, . . ., l + N in (20), we can see that if

a point π̄(i) ∈ H
(i,l)
Ω satisfies dT (π̄(i), H

(i,l)
A′S

) < Nλ1 then π̄(i) ∈ H
(i,l)
BS(i,l) by (18).

From this and (21), the claim follows.

Consider BS(i, l) ⊆ Ω obtained by extending A′S ⊆ Ω, as implied in (18). By
definition, for every ω′ ∈ A′S there is ω ∈ AS such that the two sample paths
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Xt(ω
′) and Xt(ω) exhibit the same increments π

(i)
j = x

(i)
jτ − x

(i)
(j−1)τ , j = l + 1,

. . ., l+N . On the other hand, (18) indicates for every ω′′ ∈ BS(i, l) there is ω′

∈ A′S such that the two sample paths Xt(ω
′′) and Xt(ω

′) disagree on at most

N
1
2
+λ1 of the increments π

(i)
j = x

(i)
jτ − x

(i)
(j−1)τ , j = l + 1, . . ., l + N . Hence, for

every ω′′ ∈ BS(i, l) there is ω ∈ AS such that the two sample paths Xt(ω
′′)

and Xt(ω) disagree on at most N
1
2
+λ1 of the increments π

(i)
j = x

(i)
jτ − x

(i)
(j−1)τ ,

j = l + 1, . . ., l + N . This implies that by (A1), (A2), (a) in Definition 1,
and (6), we have for every ω′′ ∈ BS(i, l) there is ω ∈ AS such that in the two
sample paths Xt(ω

′′) and Xt(ω)

∣∣∣x(i)
l+N (ω′′)− x

(i)
l+N (ω)

∣∣∣ ≤ 1

Nλ−λ1

(
b0

N
1
2
−λ

+ b1

)
(22)

Now, let us revisit (19). Applying (16) to the left hand side, we have

ν(i,l)(H
(i,l)
BS(i,l)) = μ(BS(i, l))

while, for the right hand site, by (17) we have

1− 1

ν(i,l)(H
(i,l)
A′S

)
exp

(
−N2λ1

4

)
≥ 1− 1

μ(AS)
exp

(
−N2λ1

4

)

Putting the above two and (19) together, we have that given a signal S, for
fixed 1 ≤ i ≤ n and 0 ≤ l ≤ N0,

μ(BS(i, l)) ≥ 1− 1

μ(AS)
exp

(
−N2λ1

4

)
(23)

By Definition 2 and (22) we have

∩i∈rS ∩0≤l≤N0 BS(i, l) ⊆ {a correct response R to S occurs} (24)

The theorem follows from |rS| ≤ n, (2), (23) and (24). �

Corrollary 2 In a suitable SBN, for a signal S, (6) holds when the length of
a response R is longer than the length of S, provided that the length of R is
less than or equal to Nα2 .

Proof: Consider the case where a signal S is a spatial-temporal sequence
occurring in a subnetwork at times t = lτ , l = 0, 1, . . ., N ′

0, while, its response
R is a spatial-temporal sequence occurring in a subnetwork at times t = lτ , l
= N , N + 1, . . ., N + N0 with N0 > N ′

0. It is not hard to verify the proof of
Theorem 1 can be applied to this case with care as follows. For N ′

0 < l ≤ N0,

the product probability space H
(i,l)
Ω has dimension N + (l − N ′

0) higher than
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N as in the proof of Theorem 1. Since the measure concentration introduced
by Talagrand’s isoperimetric theorem behaves better in a product probability
space with higher dimension, the N0 in Theorem 1 can be any integer as long
as this integer is less than or equal to Nα2 . �

5 Discussions

Remarking on the results of this paper, we discuss some possible directions
for future research.

5.1 Reconstruction of biological network

In the reconstruction of biological networks, we are asked to construct a bi-
ological network based upon experimental data. This is a fast growing in-
terdisciplinary field (see Chen et al, 2009). When reconstructing a biological
network, a mathematical model that correctly captures the dynamics in the
network is crucial.

Let us examine a basic problem in the the reconstruction of biological net-
works as an example. Given a target gene and a group of possible regulatory
genes, construct a network that demonstrates the regulatory mechanism and
identifies which genes are regulators of the target gene. The experimental
data used to construct this network is collected in microarrays. Experiments
have confirmed that the dynamics in such a transcription network are statis-
tical. Chen et al (2005) proposed a stochastic differential equation model for
a transcription network in Saccharomyces cerevisiae. The test results of this
model fit a set of standard testing data better than other proposed models do.
The stochastic differential equation used was an instance of the Itô equation.
The maximum likelihood estimator used was proposed by Akaike (1974) as
a general purpose estimator that has been used in many other models. The
transcription network has only a few nodes, and hence, it can be viewed as
a small-world network. The authors implemented the noise as a weak noise
modeled by a Brownian motion. Both the test and the analysis were carried
out using computer simulations of the model. A computer program can only
simulate a truncated normal distribution, which results in a weak noise as
characterized by Definition 1.

The above stochastic differential equation model provides a concrete example
that a suitable SBN may capture the signal propagation in a transcription
network in Saccharomyces cerevisiae. This allows the use of a general pur-
pose maximum likelihood estimator to select the regulators of the target gene
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correctly. As the authors pointed out, the methodology used in their study
appears applicable to reconstruction of other biological networks, if advanced
techniques from theory of stochastic differential equations are applied.

In our opinion, in the reconstruction of biological networks, it may be natural
to set a stochastic differential equation backward in time. That is, taking
suitable SBN as a framework for dynamics in biological networks, we look
at the Itô equation backward in time. Backward (or more general, Forward-
Backward) stochastic differential equation is a field initiated by Pardoux and
Peng (1990); efficient numerical methods were also proposed (e. g. Ma et al.,
2002). Although backward stochastic differential equations bring challenges
in mathematical terms, it has found numerous applications in finance (see
El Karoui, Peng and Quenez, 1997). In our case, a good numerical solution
(say, with a strong convergence property) for a backward stochastic differential
equation would in theory exhibit the evolving process of a biological network
backward in time, which could be useful in reconstruction of the network from
incomplete data.

5.2 Simulation of signal propagation in suitable SBN

Theorem 1 indicates signal propagation in suitable SBN can in principle be
simulated by numerical solution for a special type of stochastic differential
equation, the Itô equation. The simulations we carried out in subsection 3.2
follows this principle. In general, to find a numerical solution for a stochastic
differential equation can be difficult (see Kloeden and Platen, 1999). However,
applying theory of stochastic integration, we can have a simple algorithmic
scheme for simulations of signal propagation in suitable SBN. This scheme was
expressed by the algorithm Ah in subsection 3.2. A realization of this scheme
is to assign concrete functions to wl, l = 0, . . ., N0; that is, for a suitable SBN,
we may assign appropriate functions to wl in Ah and then simulate the signal
propagation process by this realization of Ah.

A signal propagation process in a suitable SBN is supposed to be captured by
the unique continuous solution of an instance of the Itô equation (1). By (7)
we project such a solution on single dimensions. In the proof of Theorem 1,
our analysis is localized on single dimensions according to (7), and then these
localized analyses are synthesized simply by an intersection in (24). This ap-
proach enables us to consider suitable SBN in general without detailed network
structures. A localized analysis focuses on the dynamics of a component, node
or link. We notice that in a biological network, the dynamics of a link may be
critical, e. g., in a transcription (or neural) network, it represents the dynamics
of a regulatory function (or a synapse) which may influence the dynamics of
the entire network. For a fixed component, by (7) we have a fixed 1 ≤ i ≤ n
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and the dynamics of this component is characterized by

x
(i)
t = x

(i)
0 +

∫ t

0
fi(s, x

(1)
s , . . . , x(n)

s )ds +
k∑

j=1

∫ t

0
σij(s, x

(1)
s . . . , x(n)

s )dB(j)
s (25)

which is an Itô integral over t ∈ [0, T ]. It is not hard to verify in a suitable
SBN (i. e. under the conditions of the proposed model), (25) can be obtained
as a sample path-wise Riemann-Stieltjes integral (Chung and Williams, 1990),
that is, for almost every ω ∈ Ω and for all 1 ≤ N∗ ≤ N + N0

x
(i)
N∗τ (ω) = x

(i)
0 (ω) + lim

N→∞
τ

N∗∑
l=1

fi((l − 1)τ, x
(1)
(l−1)τ (ω), . . . , x

(n)
(l−1)τ (ω))+

lim
N→∞

N∗∑
l=1

k∑
j=1

σij((l − 1)τ, x
(1)
(l−1)τ (ω), . . . , x

(n)
(l−1)τ (ω))(B

(j)
lτ (ω)− B

(j)
(l−1)τ (ω))

(26)

where Nτ = 1. With Lemma 1 we showed the right hand side of (26) can be
understood as a sum of random variables as expressed in (10). Then, we can see
that the expectations of these random variables determine wl. In simulation
Fig 1 as well as Fig 2, for simplicity we let each wl , l = 0, . . ., N0, be a Hill
function often used to characterize input-output relation in biological network.

Finding wl for a suitable SBN may bring challenges. However, it would ease
computer simulation for the signal propagation. By definition, the diameter
of a small-world network almost surely is poly-logarithmic in terms of the
network size. It is natural to expect in a small-world network for efficient in-
formation processing, the length of each signaling pathway for a given signal
should be poly-logarithmic in terms of the network size. But, the computa-
tional cost of using such signaling pathways may be very high, if the network
does not have a central control over signal propagation which is the case for
most biological networks. For such case, Kleinberg (2000) proposed a family
of small-world networks and proved the following. Except for some members
in this family, no computer algorithms can guide a signal to propagate along
these signaling pathways of poly-logarithmic length; and even for these mem-
bers, at each step the proposed computer algorithm needs the information of
the geometric location of the current node, which can hardly be justified in
biological terms. This result suggests signal propagation in a small-world bio-
logical network may be more complex than any computer algorithm, when the
signal propagation uses signaling pathways with length poly-logarithmic of the
network size. On the other hand, it is observed that signal propagation in most
small-world biological networks, e. g. the brain functional networks (Bassett
et al., 2006), does use signaling pathways with length poly-logarithmic of the
network size. Thus, a question is how to use computer simulation in the study
of signal propagation in suitable SBN. With the result of this paper, we sug-
gest using wl to resolve the issue, i. e., applying a mathematical procedure to
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find wl to reduce the complexity of computer simulation. It seems worthwhile
to investigate this method in the future.
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Figure captions

Figure 1: (a) A numerical solution from the Hodgkin-Huxley equation (a stan-
dard model for electrical characteristics of neurons or cardiac myocytes) is
taken as a signal S. It should be noted that the signal is used in a general
setting and is not meant to represent a specific biological situation. We sup-
pose a correct response R is essentially a duplicate of S. (b) With N = 106

and λ2 = 0.1105, the link (u, v) ensures a probability μ(AS) = exp
(
−N2λ2

4

)
=

0.005012 for S to propagate, i. e., the link is an unreliable channel so that each
hC((l+N)τ), l = 0 . . . , N0, is transformed with probability 0.005012. With no
help from the internal noise, the response is disrupted: only a few elements of
S were transformed. It should be noted that the disrupted response is only for
illustration. In a concrete biological network, such a disrupted response may
well look differently, e. g., missing spikes in a train in a neural network. (c)
With help of the internal noise, a correct response R occurs. This response is
{hC((l + N)τ) : l = 0, . . . , N0} obtained by the algorithm Ah. (d) The result
from the error checking in the algorithm Ah shows the internal noise causes
errors over the entire period. Since the internal noise is restricted at a low
level, these errors are small. Importantly, through the 106-dimensional prod-
uct probability space induced by the internal noise, a correct response occurs
shown in (c) as predicted by Theorem 1.

Figure 2: (a) A signal S consists of two branches represented respectively by
a solid and dash-dot curve. We suppose a response to a branch is essentially
a duplicate of the branch. The algorithm Ah transforms each branch to its
response, separately and independently. (b) As in simulation Fig 1, each of
the two links (u1, v1) and (u2, v2) ensures probability 0.005012 for the branch
of S to propagate. Two responses to the two branches are synchronized in
106 μs = 1, 000 ms. This type of synchronization is predicted by (24) in the
proof of Theorem 1. (c) and (d) The results obtained by the algorithm Ah in
the error checking respectively for transforming the two branches of S. The
patterns of errors are different in transforming the two branches. Nevertheless,
the internal noise synchronizes the occurrence of two correct responses shown
in (b).
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