H. W. for CH 7

Please study K-4, K-9, K-10
P-3, P-6.

(a) Draw the pole P(m).
Draw a line thru P(m) & l to l.

(b) Since the angle α between l & m can be made arbitrarily small, the angle of parallelism can be any acute angle.

(c) Line l, m, n has no common transversal.
Assume \(P(e) \) lies on the line extending \(m \).

We now prove that \(P(m) \) lies on the line extending \(l \).

We give an analytical proof.

Suppose \(T \) is a circle with radius \(R \) and center at the origin. Assume the \(P(e) = (\alpha, 0) \). Since \(O \overrightarrow{P(e)} \cdot \overrightarrow{OE} = R^2 \),

Thus \(E = (\frac{R^2}{\alpha}, 0) \).

Let \(F = (\beta_1, \beta_2) \). Since \(\overrightarrow{OF} \perp \overrightarrow{P(e)} \), we have

\[
\frac{\beta_2}{\beta_1} \cdot \frac{\beta_2 - 0}{\beta_1 - \alpha} = -1 \Rightarrow \beta_2 = -\beta_1(\beta_1 - \alpha)
\]

Hence \(\beta_1^2 + \beta_2^2 = \lambda \beta_1 \).

The equation for the line \(\overrightarrow{OF} \) is \(y = \frac{\beta_2}{\beta_1} x \), which meets the vertical line \(\overrightarrow{AB} : x = \frac{R^2}{\alpha} \) at the point \(Q = (\frac{R^2}{\alpha}, \frac{\beta_2 R^2}{\beta_1 \alpha}) \).

Since \(\overrightarrow{OQ} = \sqrt{\left(\frac{R^2}{\alpha}\right)^2 + \left(\frac{\beta_2 R^2}{\beta_1 \alpha}\right)^2} = \frac{R^2}{\alpha} \sqrt{1 + \frac{\beta_2^2}{\beta_1^2}} = \frac{R^2}{\alpha} \sqrt{\frac{\alpha \beta_1}{\beta_1^2}} = \frac{R^2}{\alpha} \sqrt{\frac{\alpha \beta_1}{\beta_1^2}} = \frac{R^2}{\alpha} \frac{\alpha \beta_1}{\beta_1^2} = \frac{R^2}{\alpha^2} \sqrt{\frac{\alpha \beta_1}{\beta_1^2}}\) and \(\overrightarrow{OF} = \sqrt{\beta_1^2 + \beta_2^2} = \sqrt{\lambda \beta_1} \), we have

\(\overrightarrow{OQ} \cdot \overrightarrow{OF} = R^2 \) Hence \(Q \) is the pole of \(CD \).

Thus \(\overrightarrow{AB} \) passes through the pole of \(m \).
Let \(z = x_1 + ix_2 \), which has coordinates \((x_1, x_2, 0)\).

The line \(\overrightarrow{Nz} \) has parametric equation
\[
\begin{align*}
x_1 &= o + tx_1 \\
x_2 &= o + tx_2 \\
x_3 &= 1 - t.
\end{align*}
\]

We now find the intersection \(P \) of this line with the unit sphere:
\[
(tx_1)^2 + (tx_2)^2 + (1-t)^2 = 1
\]
\[
\Rightarrow t^2(1+x_1^2+x_2^2) - 2t = 0
\]
\[
\Rightarrow t = 0 \text{ or } t = \frac{2}{1+x_1^2+x_2^2}.
\]

Hence \(P = \left(\frac{2x_1}{1+x_1^2+x_2^2}, \frac{2x_2}{1+x_1^2+x_2^2}, 1 - \frac{2}{1+x_1^2+x_2^2} \right) \).

Hence \(F(z) = \frac{2x_1}{1+x_1^2+x_2^2} + i \frac{2x_2}{1+x_1^2+x_2^2} = \frac{2(x_1+i x_2)}{1+x_1^2+x_2^2} \)
\[
= \frac{2z}{1+|z|^2}.
\]

Let \(W = F(z) = (u_1, u_2) \). Then \(P = (u_1, u_2, -\sqrt{1-u_1^2-u_2^2}) \).

Hence the line \(\overrightarrow{NP} \) is given by:
\[
\begin{align*}
x_1 &= tu_1, \\
x_2 &= tu_2, \\
x_3 &= 1 + t(-\sqrt{1-u_1^2-u_2^2} - 1).
\end{align*}
\]

Letting \(z = 0 \):
\[
1 - t(\sqrt{1-u_1^2-u_2^2} + 1) = 0 \Rightarrow t = \frac{1}{1+\sqrt{1-1|w|^2}}
\]

Thus \(z = F^{-1}(w) = \frac{u_1 + i u_2}{1+\sqrt{1-1|w|^2}} = \frac{w}{1+\sqrt{1-1|w|^2}} \) which is the

Formula for the inverse.
(a) \[d'(AB) = \frac{1}{2} | \ln (AB, PQ) | \]

\[= \frac{1}{2} | \ln \left(\frac{AP}{A^Q} \cdot \frac{BQ}{B^P} \right) | = \frac{1}{2} | \ln \left(\frac{1}{\sqrt{3}} \right) | \]

\[= \frac{1}{2} \ln 3. \]

(b) Suppose \(M = (0, y) \) is the midpoint of \(AB \), then

\[d'(MA) = d'(MB) = \frac{1}{2} d'(AB) \]

\[\text{Hence} \]

\[\frac{1}{2} | \ln (MA, PQ) | = \frac{1}{4} \ln 3 \]

\[= \frac{1}{2} | \ln \left(\frac{MP}{MQ} \cdot \frac{AQ}{AP} \right) | = \frac{1}{2} \ln 3 \]

\[\ln \left(\frac{y+1}{1-y} \right) = \ln \sqrt{3} \quad \Rightarrow \quad \frac{y+1}{1-y} = \sqrt{3} \]

\[\Rightarrow \quad y+1 = \sqrt{3} (1-y), \quad y+1 = \sqrt{3} - \sqrt{3} y \quad \Rightarrow \quad y = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \]

\[\text{Hence} M = (0, \frac{\sqrt{3} - 1}{\sqrt{3} + 1}) = (0, \frac{\sqrt{3} - 1}{3-1}) = (0, 2-\sqrt{3}). \]

(C) Let \(X = (x, y) \) be a point that are equal distance to \(l \) as \(B \). Let \(Y = (x, 0) \). Then

\[d'(XY) = d'(AB) = \frac{1}{2} \ln 3. \]

\[\text{Hence} \]

\[\frac{1}{2} | \ln \left(\frac{XP'}{XQ'} \cdot \frac{YP'}{YP} \right) | = \frac{1}{2} \ln \left(\frac{\sqrt{1-x^2}+y}{1-x^2-y} \right) \cdot \frac{\sqrt{1-x^2}}{1-x^2-y} = \frac{1}{2} \ln 3 \]

\[\Rightarrow \quad \frac{\sqrt{1-x^2}+y}{1-x^2-y} = 3 \quad \Rightarrow \quad \sqrt{1-x^2}+y = 3(1-x^2)-3y \]

\[\Rightarrow \quad 2y = \sqrt{1-x^2} \quad \Rightarrow \quad 4y^2 + x^2 = 1, \text{ which is an equation for an ellipse}. \]
Given: \(A' \) is the inverse of \(A \) in \(\delta \); \(\alpha \) not thru \(C \);
\(A' \) is the inverse of \(A \) in \(\delta \);
Show: \(A' \) is the inverse of \(C \) in \(\alpha' \).

Proof:
By Prop 7.5, \(A' \) is the inverse of \(C \) in \(\alpha' \) if and only if any circle thru \(A' \) & \(C \) is \(\perp \) to \(\alpha' \).

Now let \(\beta \) be any circle thru \(C \) & \(A' \). Then the inverse of \(\beta \) in \(\delta \) is a line thru \(A \). Since \(A \) is the center of \(\alpha \), we have \(\beta' \perp \alpha' \). Since angle is preserved under inversion, \(\beta' \perp \alpha' \).
Step 1: Pick a point B on P-ray \overrightarrow{AP}. Draw a tangent t to the arc \widehat{AP}. Let t meet \overrightarrow{OA} at C. Draw a circle with center C thru B. This circle meets the other side \overrightarrow{AQ} at B'. By the construction, the Poincaré length $d(AB) = d(AB')$. The P-angle-bisector of angle \angleBAB' is then the P-perpendicular bisector of P-segment BB'. In Step 2, we will show how to construct the I-bisector.

Step 2: We now show how to construct P-perpendicular bisector of P-segment BB'. (See next page for the diagram.)

(1) Let Q be the center of “P-line thru B&B'”

(2) The ray \overrightarrow{QB} meet t' at A&C; the ray $\overrightarrow{QB'}$ meet t' at A'&C'.

(3) $\overrightarrow{AA'}$ & $\overrightarrow{CC'}$ meet at a point P.

(4) From P, draw a tangent to t', tangent at T.

(5) The circle with center P and thru T is the desired P-perpendicular bisector of P-segment BB'.
(See diagram)

\(\overline{OQ} = \sqrt{2} \). Hence

\(\overline{OP} = \sqrt{2} - 1 \)

By Lemma 7.4

\[\frac{e^d - 1}{e^d + 1} = (\sqrt{2} - 1) \]

\[\Rightarrow e^d - 1 = (\sqrt{2} - 1)(e^d + 1) \]

\[\Rightarrow e^d = \frac{\sqrt{2} - 1 + 1}{1 - (\sqrt{2} - 1)} = \frac{\sqrt{2}}{2 - \sqrt{2}} = \frac{\sqrt{2}(2 + \sqrt{2})}{4 - 2} = \sqrt{2} + 1 \]

Hence \(d = \log(\sqrt{2} + 1) \).

\(\Box \)